Existence of solutions for wave-type hemivariational inequalities with noncoercive viscosity damping

被引:10
作者
Gasinski, L [1 ]
Smolka, M [1 ]
机构
[1] Jagiellonian Univ, Inst Comp Sci, PL-30072 Krakow, Poland
关键词
hemivariational inequalities; Clarke subdifferential; viscosity damping;
D O I
10.1016/S0022-247X(02)00057-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove the existence of solutions for a hyperbolic hemivariational inequality of the form u" + Au' + Bu + partial derivativej(u) is an element of f, where B is a linear elliptic operator and A is linear and nonnegative (not necessarily coercive). (C) 2002 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:150 / 164
页数:15
相关论文
共 29 条
[1]  
ADAMS ME, 1990, COCKROACHES MODELS N, V2, P3
[2]   Monotonicity methods for nonlinear evolution equations [J].
Berkovits, J ;
Mustonen, V .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1996, 27 (12) :1397-1405
[3]  
Bian W, 1998, INDIAN J PURE AP MAT, V29, P1177
[4]   VARIATIONAL-METHODS FOR NON-DIFFERENTIABLE FUNCTIONALS AND THEIR APPLICATIONS TO PARTIAL-DIFFERENTIAL EQUATIONS [J].
CHANG, KC .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1981, 80 (01) :102-129
[5]  
Clarke, 1990, OPTIMIZATION NONSMOO, DOI DOI 10.1137/1.9781611971309
[6]  
Duvaut G., 1976, INEQUALITIES MECH PH, DOI 10.1007/978-3-642-66165-5
[7]  
Ekeland I., 1976, CONVEX ANAL VARIATIO
[8]  
GAJEWSKI H, 1974, NICHLINEARE OPERATOR
[9]  
GASINSKI L, IN PRESS J MATH ANAL
[10]  
GASINSKI L, 2000, THESIS JAGIELLONIAN