Existence of solutions for wave-type hemivariational inequalities with noncoercive viscosity damping

被引:10
作者
Gasinski, L [1 ]
Smolka, M [1 ]
机构
[1] Jagiellonian Univ, Inst Comp Sci, PL-30072 Krakow, Poland
关键词
hemivariational inequalities; Clarke subdifferential; viscosity damping;
D O I
10.1016/S0022-247X(02)00057-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove the existence of solutions for a hyperbolic hemivariational inequality of the form u" + Au' + Bu + partial derivativej(u) is an element of f, where B is a linear elliptic operator and A is linear and nonnegative (not necessarily coercive). (C) 2002 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:150 / 164
页数:15
相关论文
共 18 条
  • [1] An existence theorem for wave-type hyperbolic hemivariational inequalities
    Gasinski, L
    Smolka, M
    MATHEMATISCHE NACHRICHTEN, 2002, 242 : 79 - 90
  • [2] Existence of Solutions for Noncoercive Hemivariational Inequalities by an Equilibrium Approach Under Pseudomonotone Perturbation
    Lahmdani, A.
    Chadli, O.
    Yao, J. C.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2014, 160 (01) : 49 - 66
  • [3] Existence of Solutions for Noncoercive Hemivariational Inequalities by an Equilibrium Approach Under Pseudomonotone Perturbation
    A. Lahmdani
    O. Chadli
    J. C. Yao
    Journal of Optimization Theory and Applications, 2014, 160 : 49 - 66
  • [4] Existence of Solutions for a Class of Noncoercive Variational–Hemivariational Inequalities Arising in Contact Problems
    Yongjian Liu
    Zhenhai Liu
    Ching-Feng Wen
    Jen-Chih Yao
    Shengda Zeng
    Applied Mathematics & Optimization, 2021, 84 : 2037 - 2059
  • [5] Existence of Solutions for a Class of Noncoercive Variational-Hemivariational Inequalities Arising in Contact Problems
    Liu, Yongjian
    Liu, Zhenhai
    Wen, Ching-Feng
    Yao, Jen-Chih
    Zeng, Shengda
    APPLIED MATHEMATICS AND OPTIMIZATION, 2021, 84 (02) : 2037 - 2059
  • [6] On existence of solutions for parabolic hemivariational inequalities
    Migorski, S
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2001, 129 (1-2) : 77 - 87
  • [8] Existence Theorems of Hartman–Stampacchia Type for Hemivariational Inequalities and Applications
    Panagiotis D. Panagiotopoulos
    Michel Fundo
    Vicenţiu Rădulescu
    Journal of Global Optimization, 1999, 15 : 41 - 54
  • [9] Existence theorems of Hartman-Stampacchia type for hemivariational inequalities and applications
    Panagiotopoulos, PD
    Fundo, M
    Radulescu, V
    JOURNAL OF GLOBAL OPTIMIZATION, 1999, 15 (01) : 41 - 54
  • [10] On the existence of antiperiodic solutions for hemivariational inequalities: an equilibrium problem approach
    Chadli, Ouayl
    Kassay, Gabor
    Saidi, Asma
    OPTIMIZATION LETTERS, 2021, 15 (03) : 879 - 900