ONE-DIMENSIONAL INFINITE HORIZON VARIATIONAL PROBLEMS ARISING IN CONTINUUM MECHANICS

被引:0
|
作者
Zaslavski, Alexander J. [1 ]
机构
[1] Technion Israel Inst Technol, Dept Math, IL-32000 Haifa, Israel
关键词
Approximate solution; infinite horizon problem; turnpike property; EXISTENCE; EXTREMALS; ACCUMULATION;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we discuss the existence and the structure of approximate solutions of autonomous one-dimensional second order variational problems related to a model in thermodynamics. We are interested in turnpike properties of the approximate solutions which are independent of the length of the interval, for all sufficiently large intervals.
引用
收藏
页码:325 / 343
页数:19
相关论文
共 50 条
  • [21] A Variational Approach for One-Dimensional Scalar Field Problems
    Hadjian, Armin
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2018, 49 (04): : 621 - 632
  • [22] On Legendre and Weierstrass Conditions in One-Dimensional Variational Problems
    Sychev, M. A.
    Sycheva, N. N.
    JOURNAL OF CONVEX ANALYSIS, 2017, 24 (01) : 123 - 133
  • [23] On the regularity of solutions of one-dimensional variational obstacle problems
    Mandallena, Jean-Philippe
    ADVANCES IN CALCULUS OF VARIATIONS, 2018, 11 (02) : 203 - 222
  • [24] A Variational Approach for One-Dimensional Scalar Field Problems
    Armin Hadjian
    Indian Journal of Pure and Applied Mathematics, 2018, 49 : 621 - 632
  • [25] COULOMB ONE-DIMENSIONAL PROBLEMS IN QUANTUM-MECHANICS
    GOSTEV, VB
    GOSTEV, IV
    FRENKIN, AR
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 3 FIZIKA ASTRONOMIYA, 1995, 36 (02): : 11 - 15
  • [26] Variational cluster approach to ferromagnetism in infinite dimensions and in one-dimensional chains
    Balzer, Matthias
    Potthoff, Michael
    PHYSICAL REVIEW B, 2010, 82 (17):
  • [27] On the variational formulation of problems in Continuum Damage Mechanics
    Ibijola, E.A.
    Matthew-Ojelabi, F.
    Modelling, Measurement and Control B, 2002, 71 (5-6): : 23 - 40
  • [28] CLASSICAL AND QUANTUM-MECHANICS OF A ONE-DIMENSIONAL RELATIVISTIC ELASTIC CONTINUUM
    TAKABAYASI, T
    PROGRESS OF THEORETICAL PHYSICS, 1973, 49 (05): : 1724 - 1745
  • [29] SMOOTH OPTIMAL SYNTHESIS FOR INFINITE HORIZON VARIATIONAL PROBLEMS
    Agrachev, Andrei A.
    Chittaro, Francesca C.
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2009, 15 (01): : 173 - 188
  • [30] On a class of second order infinite horizon variational problems
    Zaslavski, Alexander J.
    DYNAMIC SYSTEMS AND APPLICATIONS, 2007, 16 (03): : 517 - 531