Approximate conservation laws in perturbed integrable lattice models

被引:21
作者
Mierzejewski, Marcin [1 ]
Prosen, Tomaz [2 ]
Prelovsek, Peter [2 ,3 ]
机构
[1] Univ Silesia, Inst Phys, PL-40007 Katowice, Poland
[2] Univ Ljubljana, Fac Math & Phys, SI-1000 Ljubljana, Slovenia
[3] Jozef Stefan Inst, SI-1000 Ljubljana, Slovenia
关键词
MANY-BODY SYSTEM; THERMODYNAMIC LIMIT; QUANTUM; TRANSPORT; ERGODICITY; TRANSITION; CHAINS; STATE;
D O I
10.1103/PhysRevB.92.195121
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We develop a numerical algorithm for identifying approximately conserved quantities in models perturbed away from integrability. In the long-time regime, these quantities fully determine correlation functions of local observables. Applying the algorithm to the perturbed XXZ model, we find that the main effect of perturbation consists in expanding the support of conserved quantities. This expansion follows quadratic dependence on the strength of perturbation. The latter result, together with correlation functions of conserved quantities obtained from the memory function analysis, confirms the feasibility of the perturbation theory.
引用
收藏
页数:8
相关论文
共 50 条
[31]   Exact formalism for the quench dynamics of integrable models [J].
Iyer, Deepak ;
Guan, Huijie ;
Andrei, Natan .
PHYSICAL REVIEW A, 2013, 87 (05)
[32]   PT-symmetric deformations of integrable models [J].
Fring, Andreas .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2013, 371 (1989)
[33]   Shock capturing by Bernstein polynomials for scalar conservation laws [J].
Glaubitz, Jan .
APPLIED MATHEMATICS AND COMPUTATION, 2019, 363
[34]   Effects of collisions on conservation laws in gyrokinetic field theory [J].
Sugama, H. ;
Watanabe, T. -H. ;
Nunami, M. .
PHYSICS OF PLASMAS, 2015, 22 (08)
[35]   TOPOLOGICAL RESOLUTION OF RIEMANN PROBLEMS FOR PAIRS OF CONSERVATION LAWS [J].
Azevedo, Arthur V. ;
Eschenazi, Cesar S. ;
Marchesin, Dan ;
Palmeira, Carlos F. B. .
QUARTERLY OF APPLIED MATHEMATICS, 2010, 68 (02) :375-393
[36]   POLYMORPHISM IN LATTICE MODELS [J].
Szortyka, Marcia M. ;
Girardi, Mauricio ;
Fiore, Carlos E. ;
Henriques, Vera B. ;
Barbosa, Marcia C. .
LIQUID POLYMORPHISM, 2013, 152 :385-398
[37]   Conservation laws, vertex corrections, and screening in Raman spectroscopy [J].
Maiti, Saurabh ;
Chubukov, Andrey V. ;
Hirschfeld, P. J. .
PHYSICAL REVIEW B, 2017, 96 (01)
[38]   Conservation laws for interacting magnetic nanoparticles at finite temperature [J].
Durhuus, Frederik L. ;
Beleggia, Marco ;
Frandsen, Cathrine .
PHYSICAL REVIEW B, 2024, 109 (05)
[39]   Translationally invariant conservation laws of local Lindblad equations [J].
Znidaric, Marko ;
Benenti, Giuliano ;
Casati, Giulio .
JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (02)
[40]   On the status of conservation laws in physics: Implications for semiclassical gravity [J].
Maudlin, Tim ;
Okon, Elias ;
Sudarsky, Daniel .
STUDIES IN HISTORY AND PHILOSOPHY OF MODERN PHYSICS, 2020, 69 :67-81