Approximate conservation laws in perturbed integrable lattice models

被引:21
作者
Mierzejewski, Marcin [1 ]
Prosen, Tomaz [2 ]
Prelovsek, Peter [2 ,3 ]
机构
[1] Univ Silesia, Inst Phys, PL-40007 Katowice, Poland
[2] Univ Ljubljana, Fac Math & Phys, SI-1000 Ljubljana, Slovenia
[3] Jozef Stefan Inst, SI-1000 Ljubljana, Slovenia
关键词
MANY-BODY SYSTEM; THERMODYNAMIC LIMIT; QUANTUM; TRANSPORT; ERGODICITY; TRANSITION; CHAINS; STATE;
D O I
10.1103/PhysRevB.92.195121
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We develop a numerical algorithm for identifying approximately conserved quantities in models perturbed away from integrability. In the long-time regime, these quantities fully determine correlation functions of local observables. Applying the algorithm to the perturbed XXZ model, we find that the main effect of perturbation consists in expanding the support of conserved quantities. This expansion follows quadratic dependence on the strength of perturbation. The latter result, together with correlation functions of conserved quantities obtained from the memory function analysis, confirms the feasibility of the perturbation theory.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Deterministic chaos vs integrable models
    Negro, Stefano
    Popov, Fedor K.
    Sonnenschein, Jacob
    PHYSICAL REVIEW D, 2023, 108 (10)
  • [22] Probing thermalization in quenched integrable and nonintegrable Fermi-Hubbard models
    Bleicker, Philip
    Stolze, Joachim
    Uhrig, Goetz S.
    PHYSICAL REVIEW A, 2020, 102 (01)
  • [23] CONSERVATION LAWS FOR THE SCHRODINGER-NEWTON EQUATIONS
    Gubbiotti, G.
    Nucci, M. C.
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2012, 19 (03) : 292 - 299
  • [24] Stochastic nonlocal conservation laws on whole space
    Lv, Guangying
    Duan, Jinqiao
    Gao, Hongjun
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 77 (07) : 1945 - 1962
  • [25] Quadratic conservation laws for equations of mathematical physics
    Kozlov, V. V.
    RUSSIAN MATHEMATICAL SURVEYS, 2020, 75 (03) : 445 - 494
  • [26] Solutions for linear conservation laws with gradient constraint
    Rodrigues, Jose Francisco
    Santos, Lisa
    PORTUGALIAE MATHEMATICA, 2015, 72 (2-3) : 161 - 192
  • [27] Nontrivial properties of heat flow: Analytical study of some anharmonic lattice microscopic models
    Pereira, Emmanuel
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2011, 390 (23-24) : 4131 - 4143
  • [28] A continuum of compass spin models on the honeycomb lattice
    Zou, Haiyuan
    Liu, Bo
    Zhao, Erhai
    Liu, W. Vincent
    NEW JOURNAL OF PHYSICS, 2016, 18
  • [29] Integrable boundary conditions for staggered vertex models
    Frahm, Holger
    Gehrmann, Sascha
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2023, 56 (02)
  • [30] Exact formalism for the quench dynamics of integrable models
    Iyer, Deepak
    Guan, Huijie
    Andrei, Natan
    PHYSICAL REVIEW A, 2013, 87 (05):