Hierarchical heterostructures of Ag nanoparticles decorated MnO2 nanowires as promising electrodes for supercapacitors

被引:190
作者
Xia, Hui [1 ,2 ]
Hong, Caiyun [1 ,2 ]
Shi, Xiaoqin [1 ]
Li, Bo [1 ,2 ]
Yuan, Guoliang [1 ]
Yao, Qiaofeng [3 ]
Xie, Jianping [3 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Mat Sci & Engn, Nanjing 210094, Jiangsu, Peoples R China
[2] Nanjing Univ Sci & Technol, Herbert Gleiter Inst Nanosci, Nanjing 210094, Jiangsu, Peoples R China
[3] Natl Univ Singapore, Dept Chem & Biomol Engn, Fac Engn, Singapore 117585, Singapore
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
NANOSHEET CORE/SHELL ARRAYS; HIGH-PERFORMANCE; ARCHITECTURE; NANOTUBES; DESIGN; GROWTH; RUO2;
D O I
10.1039/c4ta05568c
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Coating the redox-active transition-metal oxides (e. g., MnO2) with a conductive metal layer is one efficient approach to improve the electrical conductivity of the oxide-based electrodes, which could largely boost the energy density and power density of supercapacitors. Here, we report a facile yet efficient method to uniformly decorate conductive silver (Ag) nanoparticles (similar to 10 nm) on MnO2 nanowires (width of similar to 10-20 nm), which leads to a remarkable improvement of the electrical conductivity and the supercapacitive performance of MnO2-based electrodes. For instance, at a low scan rate of 10 mV s(-1), the as-designed Ag/MnO2 hybrid electrode delivers a specific capacitance of 293 F g(-1), which is twofold higher than that of the bare MnO2 electrode (similar to 130 F g(-1)). In addition, the highly conductive Ag nanoparticle layer can also improve the rate capability of the Ag/MnO2 nanowire electrode, delivering a high specific energy density and power density of 17.8 W h kg(-1) and 5000 W kg(-1), respectively, at a current density of 10 A g(-1).
引用
收藏
页码:1216 / 1221
页数:6
相关论文
共 50 条
[31]   Preparation and electrochemical properties of lamellar MnO2 for supercapacitors [J].
Yan, Jun ;
Wei, Tong ;
Cheng, Jie ;
Fan, Zhuangjun ;
Zhang, Milin .
MATERIALS RESEARCH BULLETIN, 2010, 45 (02) :210-215
[32]   Introduction of MnO2 nanoneedles to activated carbon to fabricate high-performance electrodes as electrochemical supercapacitors [J].
Kim, Myeongjin ;
Hwang, Yongseon ;
Min, Kyungchan ;
Kim, Jooheon .
ELECTROCHIMICA ACTA, 2013, 113 :322-331
[33]   Facile synthesis of carbon nanofibers/MnO2 nanosheets as high-performance electrodes for asymmetric supercapacitors [J].
Ning, Peigong ;
Duan, Xiaochuan ;
Ju, Xiaokang ;
Lin, Xiaoping ;
Tong, Xiaobin ;
Pan, Xi ;
Wang, Taihong ;
Li, Qiuhong .
ELECTROCHIMICA ACTA, 2016, 210 :754-761
[34]   Facile Preparation of Poly(3,4-ethylenedioxythiophene)/MnO2 Composite Electrodes for Efficient Supercapacitors [J].
Gao, Xue ;
Dong, Bin ;
Chen, Si ;
Chen, Buxin ;
Xiao, Xinyu ;
Zhou, Jingbo ;
Su, Xin ;
Zou, Dechun .
CHEMELECTROCHEM, 2016, 3 (11) :1746-1752
[35]   Preparation and characterization of PEDOT:PSS wrapped carbon nanotubes/MnO2 composite electrodes for flexible supercapacitors [J].
Lee, Hee Uk ;
Yin, Jun Li ;
Park, Seong Won ;
Park, Jae Yeong .
SYNTHETIC METALS, 2017, 228 :84-90
[36]   Hierarchical MnO2/SnO2 Heterostructures for a Novel Free-Standing Ternary Thermite Membrane [J].
Yang, Yong ;
Zhang, Zhi-Cheng ;
Wang, Peng-Peng ;
Zhang, Jing-Chao ;
Nosheen, Farhat ;
Zhuang, Jing ;
Wang, Xun .
INORGANIC CHEMISTRY, 2013, 52 (16) :9449-9455
[37]   Shape-Controlled Synthesis of 3D Hierarchical MnO2 Nanostructures for Electrochemical Supercapacitors [J].
Yu, Peng ;
Zhang, Xiong ;
Wang, Dongliang ;
Wang, Lei ;
Ma, Yanwei .
CRYSTAL GROWTH & DESIGN, 2009, 9 (01) :528-533
[38]   Facile synthesis of CoAl-LDH/MnO2 hierarchical nanocomposites for high-performance supercapacitors [J].
Diao, Zeng Peng ;
Zhang, Yu Xin ;
Hao, Xiao Dong ;
Wen, Zhong Quan .
CERAMICS INTERNATIONAL, 2014, 40 (01) :2115-2120
[39]   Hierarchical three-dimensional mesoporous MnO2 nanostructures for high performance aqueous asymmetric supercapacitors [J].
Bag, Sourav ;
Raj, C. Retna .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (02) :587-595
[40]   Hierarchical MnO2 nanosheets synthesized via electrodeposition-hydrothermal method for supercapacitor electrodes [J].
Zheng, Dongdong ;
Qiang, Yujie ;
Xu, Shenying ;
Li, Wenpo ;
Yu, Shanshan ;
Zhang, Shengtao .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2017, 123 (02)