Distances and diameters on iterated clique graphs

被引:9
作者
Pizaña, MA [1 ]
机构
[1] Univ Autonoma Metropolitana Iztapalapa, Dept Ingn Elect, Mexico City 09340, DF, Mexico
关键词
iterated clique graphs; distances; diameters; Johnson graphs;
D O I
10.1016/S0166-218X(03)00379-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
If G is a graph, its clique graph, K(G), is the intersection graph of all its (maximal) cliques. Iterated clique graphs are then defined recursively by: K-o(G) = G and K-n(G) = K(Kn-1(G)). We study the relationship between distances in G and distances in K-n(G). Then we apply these results to Johnson graphs to give a shorter and simpler proof of Bornstein and Szwarcfiter's theorem: For each n there exists a graph G such that diam(K-n(G)) = diam(G) + n. In the way, a new family of graphs with increasing diameters under the clique operator is shown. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:255 / 261
页数:7
相关论文
共 20 条
[1]  
[Anonymous], 1989, RESULTS MATH RELATED
[2]  
BALAKRISHNAN R, 1986, UTILITAS MATHEMATICA, V29, P263
[3]   LOCALLY 4-BY-4 GRID GRAPHS [J].
BLOKHUIS, A ;
BROUWER, AE .
JOURNAL OF GRAPH THEORY, 1989, 13 (02) :229-244
[4]  
Bornstein CF, 1998, J GRAPH THEOR, V28, P147, DOI 10.1002/(SICI)1097-0118(199807)28:3<147::AID-JGT4>3.3.CO
[5]  
2-M
[6]   ON CLIQUE CONVERGENT GRAPHS [J].
BORNSTEIN, CF ;
SZWARCFITER, JL .
GRAPHS AND COMBINATORICS, 1995, 11 (03) :213-220
[7]   A NEW INFINITE SERIES OF REGULAR UNIFORMLY GEODETIC CODE GRAPHS [J].
BROUWER, AE ;
KOOLEN, JH .
DISCRETE MATHEMATICS, 1993, 120 (1-3) :241-247
[8]   The Johnson graphs satisfy a distance extension property [J].
Dabrowski, A ;
Moss, LS .
COMBINATORICA, 2000, 20 (02) :295-300
[9]  
Hedetniemi S. T., 1972, LECT NOTES MATH, P139
[10]   CLIQUE GRAPHS OF TIME GRAPHS [J].
HEDMAN, B .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1984, 37 (03) :270-278