Subharmonic Bifurcations and Transition to Chaos in a Pipe Conveying Fluid under Harmonic Excitation

被引:3
|
作者
Geng, Yixiang [1 ]
Liu, Hanze [2 ]
机构
[1] Kunming Univ Sci & Technol, Dept Engn Mech, Kunming 650500, Yunnan, Peoples R China
[2] Liaocheng Univ, Sch Math Sci, Liaocheng 252059, Shandong, Peoples R China
来源
ADVANCES IN COMPUTATIONAL MODELING AND SIMULATION, PTS 1 AND 2 | 2014年 / 444-445卷
基金
中国国家自然科学基金;
关键词
chaotic dynamics; subharnnonic bifurcations; homoclinic bifurcations; melnikov method; pipe conveying fluid; STABILITY;
D O I
10.4028/www.scientific.net/AMM.0.791
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The subharmonic and chaotic behavior of a two end-fixed fluid conveying pipe whose base is subjected to a harmonic excitation are investigated. Melnikov method is applied for the system, and Melnikov criterions for subharmonic and homoclinic bifurcations are obtained analytically. The numerical simulations (including bifurcation diagrams, maximal Lyapunov exponents, phase portraits and Poincare map) confirm the analytical predictions and exhibit the complicated dynamical behaviors.
引用
收藏
页码:791 / +
页数:2
相关论文
共 36 条