A survey on graph-based deep learning for computational histopathology

被引:76
作者
Ahmedt-Aristizabal, David [1 ,2 ]
Armin, Mohammad Ali [1 ]
Denman, Simon [2 ]
Fookes, Clinton [2 ]
Petersson, Lars [1 ]
机构
[1] CSIRO Data61, Imaging & Comp Vis Grp, Canberra, ACT, Australia
[2] Queensland Univ Technol, SAIVT, Brisbane, Qld, Australia
关键词
Digital pathology; Cancer classification; Cell-graph; Tissue-graph; Hierarchical graph representation; Graph Convolutional Networks; Deep learning; IMAGE; DATASET;
D O I
10.1016/j.compmedimag.2021.102027
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
With the remarkable success of representation learning for prediction problems, we have witnessed a rapid expansion of the use of machine learning and deep learning for the analysis of digital pathology and biopsy image patches. However, learning over patch-wise features using convolutional neural networks limits the ability of the model to capture global contextual information and comprehensively model tissue composition. The phenotypical and topological distribution of constituent histological entities play a critical role in tissue diagnosis. As such, graph data representations and deep learning have attracted significant attention for encoding tissue representations, and capturing intra-and inter-entity level interactions. In this review, we provide a conceptual grounding for graph analytics in digital pathology, including entity-graph construction and graph architectures, and present their current success for tumor localization and classification, tumor invasion and staging, image retrieval, and survival prediction. We provide an overview of these methods in a systematic manner organized by the graph representation of the input image, scale, and organ on which they operate. We also outline the limitations of existing techniques, and suggest potential future research directions in this domain.
引用
收藏
页数:25
相关论文
共 152 条
[51]  
Ilse M, 2018, PR MACH LEARN RES, V80
[52]   Methods for nuclei detection, segmentation, and classification in digital histopathology: A review-current status and future potential [J].
Irshad, Humayun ;
Veillard, Antoine ;
Roux, Ludovic ;
Racoceanu, Daniel .
IEEE Reviews in Biomedical Engineering, 2014, 7 :97-114
[53]  
Jaume G., 2020, INT C MACH LEARN WOR, P5453
[54]   Quantifying Explainers of Graph Neural Networks in Computational Pathology [J].
Jaume, Guillaume ;
Pati, Pushpak ;
Bozorgtabar, Behzad ;
Foncubierta, Antonio ;
Anniciello, Anna Maria ;
Feroce, Florinda ;
Rau, Tilman ;
Thiran, Jean-Philippe ;
Gabrani, Maria ;
Goksel, Orcun .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :8102-8112
[55]   Cellular community detection for tissue phenotyping in colorectal cancer histology images [J].
Javed, Sajid ;
Mahmood, Arif ;
Fraz, Muhammad Moazam ;
Koohbanani, Navid Alemi ;
Benes, Ksenija ;
Tsang, Yee-Wah ;
Hewitt, Katherine ;
Epstein, David ;
Snead, David ;
Rajpoot, Nasir .
MEDICAL IMAGE ANALYSIS, 2020, 63
[56]  
Junyan Wu, 2019, Graph Learning in Medical Imaging. First International Workshop, GLMI 2019. Held in Conjunction with MICCAI 2019. Proceedings. Lecture Notes in Computer Science (LNCS 11849), P112, DOI 10.1007/978-3-030-35817-4_14
[57]   Yottixel - An Image Search Engine for Large Archives of Histopathology Whole Slide Images [J].
Kalra, Shivam ;
Tizhoosh, H. R. ;
Choi, Charles ;
Shah, Sultaan ;
Diamandis, Phedias ;
Campbell, Clinton J., V ;
Pantanowitz, Liron .
MEDICAL IMAGE ANALYSIS, 2020, 65
[58]   Mutational landscape and significance across 12 major cancer types [J].
Kandoth, Cyriac ;
McLellan, Michael D. ;
Vandin, Fabio ;
Ye, Kai ;
Niu, Beifang ;
Lu, Charles ;
Xie, Mingchao ;
Zhang, Qunyuan ;
McMichael, Joshua F. ;
Wyczalkowski, Matthew A. ;
Leiserson, Mark D. M. ;
Miller, Christopher A. ;
Welch, John S. ;
Walter, Matthew J. ;
Wendl, Michael C. ;
Ley, Timothy J. ;
Wilson, Richard K. ;
Raphael, Benjamin J. ;
Ding, Li .
NATURE, 2013, 502 (7471) :333-+
[59]   Deep learning can predict microsatellite instability directly from histology in gastrointestinal cancer [J].
Kather, Jakob Nikolas ;
Pearson, Alexander T. ;
Halama, Niels ;
Jaeger, Dirk ;
Krause, Jeremias ;
Loosen, Sven H. ;
Marx, Alexander ;
Boor, Peter ;
Tacke, Frank ;
Neumann, Ulf Peter ;
Grabsch, Heike I. ;
Yoshikawa, Takaki ;
Brenner, Hermann ;
Chang-Claude, Jenny ;
Hoffmeister, Michael ;
Trautwein, Christian ;
Luedde, Tom .
NATURE MEDICINE, 2019, 25 (07) :1054-+
[60]  
Kather Jakob Nikolas, 2018, Zenodo