Spatially resolved In and As distributions in InGaAs/GaP and InGaAs/GaAs quantum dot systems

被引:2
|
作者
Shen, J. [1 ]
Song, Y. [2 ]
Lee, M. L. [2 ]
Cha, J. J. [1 ,3 ]
机构
[1] Yale Univ, Dept Mech Engn & Mat Sci, New Haven, CT 06511 USA
[2] Yale Univ, Dept Elect Engn, New Haven, CT 06511 USA
[3] Yale Univ, Energy Sci Inst, West Haven, CT 06516 USA
基金
美国国家科学基金会;
关键词
quantum dots; chemical mapping; InGaAs; GAAS MATRIX; INXGA1-XAS; GROWTH; ISLANDS; SPACE; LAYER;
D O I
10.1088/0957-4484/25/46/465702
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
InGaAs quantum dots (QDs) on GaP are promising for monolithic integration of optoelectronics with Si technology. To understand and improve the optical properties of InGaAs/GaP QD systems, detailed measurements of the QD atomic structure as well as the spatial distributions of each element at high resolution are crucial. This is because the QD band structure, band alignment, and optical properties are determined by the atomic structure and elemental composition. Here, we directly measure the inhomogeneous distributions of In and As in InGaAs QDs grown on GaAs and GaP substrates at the nanoscale using energy dispersive x-ray spectral mapping in a scanning transmission electron microscope. We find that the In distribution is broader on GaP than on GaAs, and as a result, the QDs appear to be In-poor using a GaP matrix. Our findings challenge some of the assumptions made for the concentrations and distributions of In within InGaAs/GaAs or InGaAs/GaP QD systems and provide detailed structural and elemental information to modify the current band structure understanding. In particular, the findings of In deficiency and inhomogeneous distribution in InGaAs/GaP QD systems help to explain photoluminescence spectral differences between InGaAs/GaAs and InGaAs/GaP QD systems.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Exciton complexes in InGaAs/GaAs quantum dots
    Bayer, M
    Kulakovskii, VD
    Gutbrod, T
    Forchel, A
    PHYSICA B-CONDENSED MATTER, 1998, 249 : 620 - 623
  • [32] Linear arrays of InGaAs quantum dots on nanostructured GaAs-on-Si substrates
    Tejedor, Paloma
    Garcia-Tabares, Elisa
    Galiana, Beatriz
    Vasquez, Luis
    Garcia, Basilio J.
    APPLIED SURFACE SCIENCE, 2023, 616
  • [33] Impurity free vacancy disordering of InAs/GaAs quantum dot and InAs/InGaAs dot-in-a-well structures
    Chia, C. K.
    Chua, S. J.
    Wang, Y. J.
    Yong, A. M.
    Chow, S. Y.
    THIN SOLID FILMS, 2007, 515 (7-8) : 3927 - 3931
  • [34] Coherent dynamics in InGaAs quantum dots and quantum dot molecules
    Langbein, W
    Borri, P
    Woggon, U
    Schwab, M
    Bayer, M
    Fafard, S
    Wasilewski, Z
    Hawrylak, P
    Stavarache, V
    Reuter, D
    Wieck, AD
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2005, 26 (1-4) : 400 - 407
  • [35] Comparison of MOVPE grown GaAs, InGaAs and GaAsSb covering layers for different InAs/GaAs quantum dot applications
    Zikova, Marketa
    Hospodkova, Alice
    Pangrac, Jiri
    Oswald, Jiri
    Hulicius, Eduard
    JOURNAL OF CRYSTAL GROWTH, 2017, 464 : 59 - 63
  • [36] Electron transport study of a lateral InGaAs quantum dot
    Larsson, M.
    Wallin, D.
    Xu, H. Q.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2008, 40 (06) : 1950 - 1951
  • [37] MBE growth and characterisation of InGaAs quantum dot lasers
    Chyi, JI
    MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 2000, 75 (2-3): : 121 - 125
  • [38] Chirped InGaAs quantum dot molecules for broadband applications
    Patanasemakul, Nirat
    Panyakeow, Somsak
    Kanjanachuchai, Songphol
    NANOSCALE RESEARCH LETTERS, 2012, 7
  • [39] Chirped InGaAs quantum dot molecules for broadband applications
    Nirat Patanasemakul
    Somsak Panyakeow
    Songphol Kanjanachuchai
    Nanoscale Research Letters, 7
  • [40] Band gap engineering with sub-monolayer nitrogen insertion into InGaAs/GaAs quantum well
    Ishikawa, Fumitaro
    Morifuji, Masato
    Nagahara, Kenichi
    Uchiyama, Masayuki
    Higashi, Kotaro
    Kondow, Masahiko
    JOURNAL OF CRYSTAL GROWTH, 2011, 323 (01) : 30 - 34