Steiner tree packing number and tree connectivity

被引:21
作者
Li, Hengzhe [1 ]
Wu, Baoyindureng [2 ]
Meng, Jixiang [2 ]
Ma, Yingbin [1 ]
机构
[1] Henan Normal Univ, Coll Math & Informat Sci, Xinxiang 453007, Peoples R China
[2] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R China
关键词
Connectivity; Edge-connectivity; Packing Steiner trees; Tree connectivity; Line graph; GENERALIZED CONNECTIVITY; GRAPHS;
D O I
10.1016/j.disc.2018.03.021
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let S be a set of at least two vertices in a graph G. A subtree T of G is a S-Steiner tree if S subset of V(T). Two S-Steiner trees T-1 and T-2 are edge-disjoint (resp. internally vertex-disjoint) if E(T-1) boolean AND E(T-2) = (sic) (resp. E(T-1) boolean AND E(T-2) = (sic) and V(T-1) boolean AND V(T-2) = S). Let lambda(G)(S) (resp. KG(S)) be the maximum number of edge-disjoint (resp. internally vertex-disjoint) S-Steiner trees in G, and let lambda(k)(G) (resp. kappa(k)(G)) be the minimum lambda(G)(S) (resp. kappa(G)(S)) for S ranges over all k-subset of V(G). Kriesell conjectured that if lambda(G)({x, y}) >= 2k for any x, y is an element of S, then lambda(G)(S) >= k. He proved that the conjecture holds for vertical bar S vertical bar = 3, 4. In this paper, we give a short proof of Kriesell's Conjecture for vertical bar S vertical bar = 3, 4, and also show that lambda(k)(G) >= (left perpendicular)1/k-1 (inverted right perpendicular)kl/2(inverted right perpendicular))(left perpendicular) (rep. kappa(k)(G) >= (left perpendicular)1/k-1 (inverted right perpendicular)kl/2(inverted right perpendicular))(left perpendicular) if lambda(G) >= l in G, where k = 3, 4. Moreover, we also study the relation between kappa(k)(L(G)) and lambda(k)(G), where L(G) is the line graph of G. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:1945 / 1951
页数:7
相关论文
共 17 条
[1]  
Bondy J.A., 2008, GTM, V244
[2]   CONNECTIVITY OF LINE-GRAPHS [J].
CHARTRAND, G ;
STEWART, MJ .
MATHEMATISCHE ANNALEN, 1969, 182 (03) :170-+
[3]   Rainbow Trees in Graphs and Generalized Connectivity [J].
Chartrand, Gary ;
Okamoto, Futaba ;
Zhang, Ping .
NETWORKS, 2010, 55 (04) :360-367
[4]   Packing Steiner trees [J].
DeVos, Matt ;
McDonald, Jessica ;
Pivotto, Irene .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2016, 119 :178-213
[5]   On decomposing a hypergraph into k connected sub-hypergraphs [J].
Frank, A ;
Király, T ;
Kriesell, M .
DISCRETE APPLIED MATHEMATICS, 2003, 131 (02) :373-383
[6]   PENDANT TREE-CONNECTIVITY [J].
HAGER, M .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1985, 38 (02) :179-189
[7]  
HIND H.R., 1996, C NUMER, V113, P179
[8]  
Ivan G., 1998, DE L0Institut Mathematique, V63, P31
[9]   Edge-disjoint trees containing some given vertices in a graph [J].
Kriesell, M .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2003, 88 (01) :53-65
[10]   Packing Steiner trees on four terminals [J].
Kriesell, Matthias .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2010, 100 (06) :546-553