Improved performance of LDPC-coded MIMO systems with EP-based soft-decisions

被引:0
作者
Cespedes, Javier [1 ]
Olmos, Pablo M. [1 ]
Sanchez-Fernandez, Matilde [1 ]
Perez-Cruz, Fernando [1 ]
机构
[1] Univ Carlos III Madrid, Signal Theory & Commun Dept, Madrid, Spain
来源
2014 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT) | 2014年
关键词
MIMO communication systems; Low Complexity receiver; Expectation Propagation; LDPC; LATTICE;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Modern communications systems use efficient encoding schemes, multiple-input multiple-output (MIMO) and high-order QAM constellations for maximizing spectral efficiency. However, as the dimensions of the system grow, the design of efficient and low-complexity MIMO receivers possesses technical challenges. Symbol detection can no longer rely on conventional approaches for posterior probability computation due to complexity. Marginalization of this posterior to obtain per-antenna soft-bit probabilities to be fed to a channel decoder is computationally challenging when realistic signaling is used. In this work, we propose to use Expectation Propagation (EP) algorithm to provide an accurate low-complexity Gaussian approximation to the posterior, easily solving the posterior marginalization problem. EP soft-bit probabilities are used in an LDPC-coded MIMO system, achieving outstanding performance improvement compared to similar approaches in the literature for low-complexity LDPC MIMO decoding.
引用
收藏
页码:1997 / 2001
页数:5
相关论文
共 14 条
  • [1] Iterative multiuser joint decoding:: Optimal power allocation and low-complexity implementation
    Caire, G
    Müller, RR
    Tanaka, T
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2004, 50 (09) : 1950 - 1973
  • [2] Cespedes J., 2014, IEEE T COMMUNI UNPUB
  • [3] FINCKE U, 1985, MATH COMPUT, V44, P463, DOI 10.1090/S0025-5718-1985-0777278-8
  • [4] Gan YH, 2005, GLOB TELECOMM CONF, P2953
  • [5] Goldberger J, 2013, IEEE INT SYMP INFO, P2004, DOI 10.1109/ISIT.2013.6620577
  • [6] MIMO Detection for High-Order QAM Based on a Gaussian Tree Approximation
    Goldberger, Jacob
    Leshem, Amir
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (08) : 4973 - 4982
  • [7] MIMO Techniques in WiMAX and LTE: A Feature Overview
    Li, Qinghua
    Li, Guangjie
    Lee, Wookbong
    Lee, Moon-il
    Mazzarese, David
    Clerckx, Bruno
    Li, Zexian
    [J]. IEEE COMMUNICATIONS MAGAZINE, 2010, 48 (05) : 86 - 92
  • [8] Minka T. P., 2001, A family of algorithms for approximate bayesian inference
  • [9] Minka T. P., 2001, PROC 17 C UNCERTAIN, P362
  • [10] Richardson T., 2008, Modern coding theory