NASICON-structured Na3.1Zr1.95Mg0.05Si2PO12 solid electrolyte for solid-state sodium batteries

被引:72
作者
Yang, Jing [1 ]
Wan, Hong-Li [1 ,2 ]
Zhang, Zhi-Hua [1 ,2 ]
Liu, Gao-Zhan [1 ,2 ]
Xu, Xiao-Xiong [1 ]
Hu, Yong-Sheng [2 ,3 ]
Yao, Xia-Yin [1 ]
机构
[1] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Ningbo 315201, Zhejiang, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Chinese Acad Sci, Inst Phys, Beijing Key Lab New Energy Mat & Devices, Key Lab Renewable Energy, Beijing 100190, Peoples R China
关键词
Solid electrolyte; NASICON-type structure; Sodium-ionic conductivity; Solid-state sodium battery; ION BATTERIES; SUPERIONIC CONDUCTOR; CRYSTAL-STRUCTURE; LITHIUM-ION; CHALLENGES; TRANSPORT; NA;
D O I
10.1007/s12598-018-1020-3
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Using stable inorganic solid electrolyte to replace organic liquid electrolyte could significantly reduce potential safety risks of rechargeable batteries. Na-superionic conductor (NASICON)-structured solid electrolyte is one of the most promising sodium solid electrolytes and can be employed in solid-state sodium batteries. In this work, a NASICON-structured solid electrolyte Na3.1Zr1.95Mg0.05Si2PO12 was synthesized through a facile solid-state reaction, yielding high sodium-ionic conductivity of 1.33 x 10(-3) S center dot cm(-1) at room temperature. The results indicate that Mg2+ is a suitable and economical substitution ion to replace Zr4+, and this synthesis route can be scaled up for powder preparation with low cost. In addition to electrolyte material preparation, solid-state batteries with Na3.1Zr1.95Mg0.05Si2PO12 as electrolyte were assembled. A specific capacity of 57.9 mAh center dot g(-1) is maintained after 100 cycles under a current density of 0.5C rate at room temperature. The favorable cycling performance of the solid-state battery suggests that Na3.1Zr1.95Mg0.05Si2PO12 is an ideal electrolyte candidate for solid-state sodium batteries.
引用
收藏
页码:480 / 487
页数:8
相关论文
共 36 条
[21]   Scandium-Substituted Na3Zr2(SiO4)2(PO4) Prepared by a Solution Assisted Solid-State Reaction Method as Sodium-Ion Conductors [J].
Ma, Qianli ;
Guin, Marie ;
Naqash, Sahir ;
Tsai, Chih-Long ;
Tietz, Frank ;
Guillon, Olivier .
CHEMISTRY OF MATERIALS, 2016, 28 (13) :4821-4828
[22]   Prototype Sodium-Ion Batteries Using an Air-Stable and Co/Ni-Free O3-Layered Metal Oxide Cathode [J].
Mu, Linqin ;
Xu, Shuyin ;
Li, Yunming ;
Hu, Yong-Sheng ;
Li, Hong ;
Chen, Liquan ;
Huang, Xuejie .
ADVANCED MATERIALS, 2015, 27 (43) :6928-+
[23]   Liquid-phase sintering of highly Na+ ion conducting Na3Zr2Si2PO12 ceramics using Na3BO3 additive [J].
Noi, Kousuke ;
Suzuki, Kenji ;
Tanibata, Naoto ;
Hayashi, Akitoshi ;
Tatsumisago, Masahiro .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2018, 101 (03) :1255-1265
[24]   Na-ion batteries, recent advances and present challenges to become low cost energy storage systems [J].
Palomares, Veronica ;
Serras, Paula ;
Villaluenga, Irune ;
Hueso, Karina B. ;
Carretero-Gonzalez, Javier ;
Rojo, Teofilo .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (03) :5884-5901
[25]   Sodium Ion Diffusion in Nasicon (Na3Zr2Si2PO12) Solid Electrolytes: Effects of Excess Sodium [J].
Park, Heetaek ;
Jung, Keeyoung ;
Nezafati, Marjan ;
Kim, Chang-Soo ;
Kang, Byoungwoo .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (41) :27814-27824
[26]   Improved structural stability and ionic conductivity of Na3Zr2Si2PO12 solid electrolyte by rare earth metal substitutions [J].
Ruan, Yanli ;
Song, Shidong ;
Liu, Jingjing ;
Liu, Ping ;
Cheng, Bowen ;
Song, Xiangyun ;
Battagli, Vincent .
CERAMICS INTERNATIONAL, 2017, 43 (10) :7810-7815
[27]   Sol-gel processing of NASICON thin film using aqueous complex precursor [J].
Shimizu, Y ;
Ushijima, T .
SOLID STATE IONICS, 2000, 132 (1-2) :143-148
[28]   A Na+ Superionic Conductor for Room-Temperature Sodium Batteries [J].
Song, Shufeng ;
Duong, Hai M. ;
Korsunsky, Alexander M. ;
Hu, Ning ;
Lu, Li .
SCIENTIFIC REPORTS, 2016, 6
[29]   High-voltage NASICON Sodium Ion Batteries: Merits of Fluorine Insertion [J].
Song, Weixin ;
Wu, Zhengping ;
Chen, Jun ;
Lan, Qing ;
Zhu, Yirong ;
Yang, Yingchang ;
Pan, Chengchi ;
Hou, Hongshuai ;
Jing, Mingjun ;
Ji, Xiaobo .
ELECTROCHIMICA ACTA, 2014, 146 :142-150
[30]   Current trends and future challenges of electrolytes for sodium-ion batteries [J].
Vignarooban, K. ;
Kushagra, R. ;
Elango, A. ;
Badami, P. ;
Mellander, B. -E. ;
Xu, X. ;
Tucker, T. G. ;
Nam, C. ;
Kannan, A. M. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (04) :2829-2846