MSRD-Unet: Multiscale Residual Dilated U-Net for Medical Image Segmentation

被引:3
作者
Khalaf, Muna [1 ]
Dhannoon, Ban N. [2 ]
机构
[1] Univ Baghdad, Coll Sci Women, Dept Comp Sci, Baghdad, Iraq
[2] Al Nahrain Univ, Coll Sci, Dept Comp Sci, Baghdad, Iraq
关键词
Attention; Deep Learning; Dilated Convolution; Medical Image Segmentation; U-Net; NETWORK;
D O I
10.21123/bsj.2022.7559
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Semantic segmentation is an exciting research topic in medical image analysis because it aims to detect objects in medical images. In recent years, approaches based on deep learning have shown a more reliable performance than traditional approaches in medical image segmentation. The U-Net network is one of the most successful end-to-end convolutional neural networks (CNNs) presented for medical image segmentation. This paper proposes a multiscale Residual Dilated convolution neural network (MSRD-UNet) based on U-Net. MSRD-UNet replaced the traditional convolution block with a novel deeper block that fuses multi-layer features using dilated and residual convolution. In addition, the squeeze and execution attention mechanism (SE) and the skip connections are redesigned to give a more reliable fusion of features. MSRD-UNet allows aggregation of contextual information, and the network goes without needing to increase the number of parameters or required floating-point operations (FLOPS). The proposed model was evaluated on three multimodal datasets: polyp, skin lesion, and nuclei segmentation. The obtained results proved that the MSDR-Unet model outperforms several state-of-the-art U-Net-based methods.
引用
收藏
页码:1603 / 1611
页数:9
相关论文
共 50 条
  • [41] Local Adaptive U-net for Medical Image Segmentation
    Liu, Ning
    Liu, Liangliang
    Wang, Jianxin
    2020 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, 2020, : 670 - 674
  • [42] WRANet: wavelet integrated residual attention U-Net network for medical image segmentation
    Yawu Zhao
    Shudong Wang
    Yulin Zhang
    Sibo Qiao
    Mufei Zhang
    Complex & Intelligent Systems, 2023, 9 : 6971 - 6983
  • [43] Image Segmentation with Pyramid Dilated Convolution Based on ResNet and U-Net
    Zhang, Qiao
    Cui, Zhipeng
    Niu, Xiaoguang
    Geng, Shijie
    Qiao, Yu
    NEURAL INFORMATION PROCESSING (ICONIP 2017), PT II, 2017, 10635 : 364 - 372
  • [44] Shape-intensity-guided U-net for medical image segmentation
    Dong, Wenhui
    Du, Bo
    Xu, Yongchao
    NEUROCOMPUTING, 2024, 610
  • [45] Enhancing medical image segmentation with a multi-transformer U-Net
    Dan, Yongping
    Jin, Weishou
    Yue, Xuebin
    Wang, Zhida
    PEERJ, 2024, 12
  • [46] A Densely Connected Network Based on U-Net for Medical Image Segmentation
    Yang, Zhenzhen
    Xu, Pengfei
    Yang, Yongpeng
    Bao, Bing-Kun
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2021, 17 (03)
  • [47] Mixed-Precision Quantization of U-Net for Medical Image Segmentation
    Guo, Liming
    Fei, Wen
    Dai, Wenrui
    Li, Chenglin
    Zou, Junni
    Xiong, Hongkai
    2022 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS 22), 2022, : 2871 - 2875
  • [48] Multiscale Attention U-Net for Skin Lesion Segmentation
    Alahmadi, Mohammad D.
    IEEE ACCESS, 2022, 10 : 59145 - 59154
  • [49] MP-FocalUNet: Multiscale parallel focal self-attention U-Net for medical image segmentation
    Wang, Chuan
    Jiang, Mingfeng
    Li, Yang
    Wei, Bo
    Li, Yongming
    Wang, Pin
    Yang, Guang
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2025, 260
  • [50] Can SegFormer be a True Competitor to U-Net for Medical Image Segmentation?
    Sourget, Theo
    Hasany, Syed Nouman
    Meriaudeau, Fabrice
    Petitjean, Caroline
    MEDICAL IMAGE UNDERSTANDING AND ANALYSIS, MIUA 2023, 2024, 14122 : 111 - 118