MSRD-Unet: Multiscale Residual Dilated U-Net for Medical Image Segmentation

被引:3
作者
Khalaf, Muna [1 ]
Dhannoon, Ban N. [2 ]
机构
[1] Univ Baghdad, Coll Sci Women, Dept Comp Sci, Baghdad, Iraq
[2] Al Nahrain Univ, Coll Sci, Dept Comp Sci, Baghdad, Iraq
关键词
Attention; Deep Learning; Dilated Convolution; Medical Image Segmentation; U-Net; NETWORK;
D O I
10.21123/bsj.2022.7559
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Semantic segmentation is an exciting research topic in medical image analysis because it aims to detect objects in medical images. In recent years, approaches based on deep learning have shown a more reliable performance than traditional approaches in medical image segmentation. The U-Net network is one of the most successful end-to-end convolutional neural networks (CNNs) presented for medical image segmentation. This paper proposes a multiscale Residual Dilated convolution neural network (MSRD-UNet) based on U-Net. MSRD-UNet replaced the traditional convolution block with a novel deeper block that fuses multi-layer features using dilated and residual convolution. In addition, the squeeze and execution attention mechanism (SE) and the skip connections are redesigned to give a more reliable fusion of features. MSRD-UNet allows aggregation of contextual information, and the network goes without needing to increase the number of parameters or required floating-point operations (FLOPS). The proposed model was evaluated on three multimodal datasets: polyp, skin lesion, and nuclei segmentation. The obtained results proved that the MSDR-Unet model outperforms several state-of-the-art U-Net-based methods.
引用
收藏
页码:1603 / 1611
页数:9
相关论文
共 50 条
  • [31] A Bypass-Based U-Net for Medical Image Segmentation
    Chen, Kaixuan
    Xu, Gengxin
    Qian, Jiaying
    Ren, Chuan-Xian
    INTELLIGENCE SCIENCE AND BIG DATA ENGINEERING: VISUAL DATA ENGINEERING, PT I, 2019, 11935 : 155 - 164
  • [32] Chaining a U-Net With a Residual U-Net for Retinal Blood Vessels Segmentation
    Alfonso Francia, Gendry
    Pedraza, Carlos
    Aceves, Marco
    Tovar-Arriaga, Saul
    IEEE ACCESS, 2020, 8 : 38493 - 38500
  • [33] Multiscale Dilated U-Net Based Multifocus Image Fusion Algorithm
    Nie Fenghao
    Li Mengxia
    Zhou Mengxiang
    Dong Yuxue
    Li Zhiliang
    Li Long
    LASER & OPTOELECTRONICS PROGRESS, 2024, 61 (14)
  • [34] Dilated Squeeze-and-Excitation U-Net for Fetal Ultrasound Image Segmentation
    Qiao, Donghao
    Zulkernine, Farhana
    2020 IEEE CONFERENCE ON COMPUTATIONAL INTELLIGENCE IN BIOINFORMATICS AND COMPUTATIONAL BIOLOGY (CIBCB), 2020, : 203 - 209
  • [35] DRLSU-Net: Level set with U-Net for medical image segmentation
    Wang, Xiaofeng
    Liu, Jiashan
    Yang, Rentao
    Wu, Zhize
    Sun, Lingma
    Zou, Le
    DIGITAL SIGNAL PROCESSING, 2025, 157
  • [36] Improved U-Net Models and Its Applications in Medical Image Segmentation: A Review
    Zhang Huan
    Qiu Dawei
    Feng Yibo
    Liu Jing
    LASER & OPTOELECTRONICS PROGRESS, 2022, 59 (02)
  • [37] A COVID-19 medical image Segmentation method based on U-NET
    Wang, Chao
    Zhu, Jin
    Snu, Kai
    Li, Dayi
    Wang, Zaoji
    Yuan, Huining
    IEEE INTERNATIONAL CONFERENCE ON RECENT ADVANCES IN SYSTEMS SCIENCE AND ENGINEERING (IEEE RASSE 2021), 2021,
  • [38] Modified U-Net for cytological medical image segmentation
    Benazzouz, Mourtada
    Benomar, Mohammed Lamine
    Moualek, Youcef
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2022, 32 (05) : 1761 - 1773
  • [39] WRANet: wavelet integrated residual attention U-Net network for medical image segmentation
    Zhao, Yawu
    Wang, Shudong
    Zhang, Yulin
    Qiao, Sibo
    Zhang, Mufei
    COMPLEX & INTELLIGENT SYSTEMS, 2023, 9 (06) : 6971 - 6983
  • [40] DRA U-Net: An Attention based U-Net Framework for 2D Medical Image Segmentation
    Zhang, Xian
    Feng, Ziyuan
    Zhong, Tianchi
    Shen, Sicheng
    Zhang, Ruolin
    Zhou, Lijie
    Zhang, Bo
    Wang, Wendong
    2021 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2021, : 3936 - 3942