Lung Segmentation Using Proposed Deep Learning Architecture

被引:6
作者
Ayad, Hayder [1 ]
Ghindawi, Ikhlas Watan [2 ]
Kadhm, Mustafa S. [3 ]
机构
[1] Al Bayan Univ, Coll Business Adm, Baghdad, Iraq
[2] Al Mustansiriyah Univ, Coll Educ, Comp Sci Dept, Baghdad, Iraq
[3] Imam Jaafar Al Sadiq Univ, Fac Informat Technol, Baghdad, Iraq
关键词
CT images; lung segmentation; DNN; CNN; Softmax; RECOGNITION;
D O I
10.3991/ijoe.v16i15.17115
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The Prediction and detection disease in human lungs are a very critical operation. It depends on an efficient view of the CT images to the doctors. It depends on an efficient view of the CT images to the doctors. The clear view of the images to clearly identify the disease depends on the segmentation that may save people lives. Therefore, an accurate lung segmentation system from CT image based on proposed CNN architecture is proposed. The system used weighted Softmax function the improved the segmentation accuracy. By experiments, the system achieved a high segmentation accuracy 98.9% using LIDC-IDRI CT lung images database.
引用
收藏
页码:141 / 147
页数:7
相关论文
共 14 条
  • [1] Comparative study for 8 computational intelligence algorithms for human identification
    Abdulrahman, Shaymaa Adnan
    Khalifa, Wael
    Roushdy, Mohamed
    Salem, Abdel-Badeeh M.
    [J]. COMPUTER SCIENCE REVIEW, 2020, 36
  • [2] Lung CT Image Segmentation Using Deep Neural Networks
    Ait Skourt, Brahim
    El Hassani, Abdelhamid
    Majda, Aicha
    [J]. PROCEEDINGS OF THE FIRST INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING IN DATA SCIENCES (ICDS2017), 2018, 127 : 109 - 113
  • [3] The Lung Image Database Consortium, (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans
    Armato, Samuel G., III
    McLennan, Geoffrey
    Bidaut, Luc
    McNitt-Gray, Michael F.
    Meyer, Charles R.
    Reeves, Anthony P.
    Zhao, Binsheng
    Aberle, Denise R.
    Henschke, Claudia I.
    Hoffman, Eric A.
    Kazerooni, Ella A.
    MacMahon, Heber
    van Beek, Edwin J. R.
    Yankelevitz, David
    Biancardi, Alberto M.
    Bland, Peyton H.
    Brown, Matthew S.
    Engelmann, Roger M.
    Laderach, Gary E.
    Max, Daniel
    Pais, Richard C.
    Qing, David P-Y
    Roberts, Rachael Y.
    Smith, Amanda R.
    Starkey, Adam
    Batra, Poonam
    Caligiuri, Philip
    Farooqi, Ali
    Gladish, Gregory W.
    Jude, C. Matilda
    Munden, Reginald F.
    Petkovska, Iva
    Quint, Leslie E.
    Schwartz, Lawrence H.
    Sundaram, Baskaran
    Dodd, Lori E.
    Fenimore, Charles
    Gur, David
    Petrick, Nicholas
    Freymann, John
    Kirby, Justin
    Hughes, Brian
    Casteele, Alessi Vande
    Gupte, Sangeeta
    Sallam, Maha
    Heath, Michael D.
    Kuhn, Michael H.
    Dharaiya, Ekta
    Burns, Richard
    Fryd, David S.
    [J]. MEDICAL PHYSICS, 2011, 38 (02) : 915 - 931
  • [4] Bhavanishankar K., 2015, International Journal on Cybernetics Informatics, V4, P27
  • [5] Early Lung Cancer Detection Using Deep Learning Optimization
    Elnakib, Ahmed
    Amer, Hanan M.
    Abou-Chadi, Fatma E. Z.
    [J]. INTERNATIONAL JOURNAL OF ONLINE AND BIOMEDICAL ENGINEERING, 2020, 16 (06) : 82 - 94
  • [6] Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012
    Ferlay, Jacques
    Soerjomataram, Isabelle
    Dikshit, Rajesh
    Eser, Sultan
    Mathers, Colin
    Rebelo, Marise
    Parkin, Donald Maxwell
    Forman, David
    Bray, Freddie
    [J]. INTERNATIONAL JOURNAL OF CANCER, 2015, 136 (05) : E359 - E386
  • [7] An agricultural monitoring system based on wireless sensor and depth learning algorithm
    Geng L.
    Dong T.
    [J]. International Journal of Online Engineering, 2017, 13 (12) : 127 - 137
  • [8] Multi-resolution convolutional neural networks for fully automated segmentation of acutely injured lungs in multiple species
    Gerard, Sarah E.
    Herrmann, Jacob
    Kaczka, David W.
    Musch, Guido
    Fernandez-Bustamante, Ana
    Reinhardt, Joseph M.
    [J]. MEDICAL IMAGE ANALYSIS, 2020, 60 (60)
  • [9] Gu YC, 2019, I S BIOMED IMAGING, P438, DOI [10.1109/isbi.2019.8759207, 10.1109/ISBI.2019.8759207]
  • [10] An effective approach for CT lung segmentation using mask region-based convolutional neural networks
    Hu, Qinhua
    Souza, Luis Fabricio de F.
    Holanda, Gabriel Bandeira
    Alves, Shara S. A.
    Silva, Francisco Hercules dos S.
    Han, Tao
    Reboucas Filho, Pedro P.
    [J]. ARTIFICIAL INTELLIGENCE IN MEDICINE, 2020, 103