This study evaluated the ability of different in vitro mechanical loading tests to promote new mineral formation at bonded dentin interfaces. This research demonstrated a sequential transition in the dentin remineralizing procedure through the analysis of the mineral and matrix gradients. Mechanical loading in phosphoric acid (PA)-treated samples promoted a generalized increases in relative presence of minerals, crystallinity, ratio of phosphate peaks and a decrease in the gradient of mineral content. The organic component showed, in general terms, an increase in crosslinking. a-helices incremented in sine and square waveform loading. InEDTA + SB specimens, the relative mineral concentration incremented when loading in hold, in general. Nonuniform parameters of Bis-GMA and adhesive penetration were encountered in both groups. PA + SB promoted the highest dentin mineralization degree when loading in square, based on the increase in the relative presence of minerals and crystallinity. EDTA + SB produced any advance crystallographic maturity at the interface. High crosslinking parameters and conformational changes in proteins in PA-treated specimens indicated, indirectly, that the first remineralization is intrafibrillar.