Open-Domain Table-to-Text Generation based on Seq2seq

被引:1
作者
Cao, Juan [1 ]
Gong, Junpeng [1 ]
Zhang, Pengzhou [1 ]
机构
[1] Commun Univ China, Beijing, Peoples R China
来源
2018 INTERNATIONAL CONFERENCE ON ALGORITHMS, COMPUTING AND ARTIFICIAL INTELLIGENCE (ACAI 2018) | 2018年
关键词
Table-to-text generation; Open-domain; Seq2seq; Beam search;
D O I
10.1145/3302425.3302484
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Table-to-text generation involves using natural language to describe a table which has formal structure and valuable information. Open-domain table-to-text especially refers to table-to-text generation for open domain. This paper introduces a theme model based on seq2seq for open-domain table-to-text generation. To deal with the problem of out-of-vocabulary and make the most of the internal correlation within table and the relevance between table and text, this study adopts an improved encoder-decoder approach and a method associating table and text. In addition, this paper improves the beam search method for the inference of the model. The model is experimented on WIKITABLETEXT, and improves the current state-of-the-art BLEU-4 score from 38.23 to 38.71.
引用
收藏
页数:5
相关论文
共 10 条
[1]  
Angeli Gabor, 2010, Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing, EMNLP '10, P502
[2]  
[Anonymous], 2009, P JOINT C 47 ANN M A, DOI DOI 10.1007/978-3-642-02374-3_6
[3]  
Bao Junwei., 2018, AAAI
[4]  
Barzilay Regina, 2005, P C EMP METH NAT LAN, P331, DOI 10.3115/1220575.1220617
[5]  
Belz Anja, 2008, Natural Language Engineering, V14, P431, DOI 10.1017/S1351324907004664
[6]  
Graves A, 2013, INT CONF ACOUST SPEE, P6645, DOI 10.1109/ICASSP.2013.6638947
[7]  
Lebret Remi, 2016, P 2016 C EMP METH NA, P1203, DOI [DOI 10.18653/V1/D16-1128, 10.18653/v1/D16-1128, 10.18653/v1, 10.18653/v1/d16-1128]
[8]  
Liu Tianyu, 2018, AAAI
[9]  
Mei H., 2016, P NAACI
[10]   Real versus template-based natural language generation: A false opposition? [J].
van Deemter, K ;
Theune, M ;
Krahmer, E .
COMPUTATIONAL LINGUISTICS, 2005, 31 (01) :15-23