Dispersive optical solitons with Schrodinger-Hirota equation

被引:116
作者
Bhrawy, A. H. [1 ,2 ]
Alshaery, A. A. [3 ]
Hilal, E. M. [3 ]
Manrakhan, Wayne N. [4 ,5 ]
Savescu, Michelle [6 ]
Biswas, Anjan [1 ,4 ]
机构
[1] King Abdulaziz Univ, Fac Sci, Dept Math, Jeddah 21589, Saudi Arabia
[2] Beni Suef Univ, Fac Sci, Dept Math, Bani Suwayf, Egypt
[3] King Abdulaziz Univ, Fac Sci Girls, Dept Math, Jeddah 21589, Saudi Arabia
[4] Delaware State Univ, Dept Math Sci, Dover, DE 19901 USA
[5] Delaware Tech & Community Coll, Dept Math & Phys, Newark, DE 19713 USA
[6] Kutztown Univ Penn, Dept Math, Kutztown, PA 19530 USA
关键词
Solitons; dispersion; perturbation; birefringence; cooling; 3RD-ORDER DISPERSION;
D O I
10.1142/S0218863514500143
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The dynamics of dispersive optical solitons, modeled by Schrodinger-Hirota equation, are studied in this paper. Bright, dark and singular optical soliton solutions to this model are obtained in presence of perturbation terms that are considered with full nonlinearity. Soliton perturbation theory is also applied to retrieve adiabatic parameter dynamics of bright solitons. Optical soliton cooling is also studied. Finally, exact bright, dark and singular solitons are addressed for birefringent fibers with perturbation terms included.
引用
收藏
页数:21
相关论文
共 15 条
  • [11] ROLE OF 3RD-ORDER DISPERSION ON SOLITON INSTABILITIES AND INTERACTIONS IN OPTICAL FIBERS
    KODAMA, Y
    ROMAGNOLI, M
    WABNITZ, S
    MIDRIO, M
    [J]. OPTICS LETTERS, 1994, 19 (03) : 165 - 167
  • [12] Qingjie C., 1997, Appl. Math. J. Chin. Univ., V12, P389
  • [13] Tinggen S., 1996, Chin. J. Comput. Phys, V13, P115
  • [14] Optical solitons with non-Kerr law nonlinearity and inter-modal dispersion with time-dependent coefficients
    Topkara, Engin
    Milovic, Daniela
    Sarma, Amarendra K.
    Zerrad, Essaid
    Biswas, Anjan
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (09) : 2320 - 2330
  • [15] Wabnitz S., 1995, Optical Fiber Technology: Materials, Devices and Systems, V1, P187, DOI 10.1006/ofte.1995.1011