Reconstruction of heterogeneous materials via stochastic optimization of limited-angle X-ray tomographic projections

被引:15
作者
Li, Hechao [1 ]
Chawla, Nikhilesh [1 ]
Jiao, Yang [1 ]
机构
[1] Arizona State Univ, Tempe, AZ 85287 USA
基金
美国国家科学基金会;
关键词
Stochastic reconstruction; Material microstructure; Limited-angle projections; X-ray tomography; MATRIX COMPOSITES; MICROSTRUCTURE; COALESCENCE; ALGORITHM; EVOLUTION; GROWTH; BINARY; ALLOY; SETS;
D O I
10.1016/j.scriptamat.2014.05.002
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
X-ray tomography has provided a non-destructive means for microstructure characterization in three and four dimensions. A stochastic procedure to accurately reconstruct material microstructure from limited-angle X-ray tomographic projections is presented and its utility is demonstrated by reconstructing a variety of distinct heterogeneous materials and elucidating the information content of different projection data sets. A small number of projections (e.g. 20-40) are necessary for accurate reconstructions via the stochastic procedure, indicating its high efficiency in using limited structural information. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:48 / 51
页数:4
相关论文
共 38 条
[1]   A discrete tomography algorithm for improving the quality of three-dimensional X-ray diffraction grain maps [J].
Alpers, A. ;
Poulsen, H. F. ;
Knudsen, E. ;
Herman, G. T. .
JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2006, 39 :582-588
[2]  
Alvino C.V., 2004, P 2004 IEEE COMP SOC, V1
[3]   Characterization by X-ray computed tomography of decohesion, porosity growth and coalescence in model metal matrix composites [J].
Babout, L ;
Maire, E ;
Buffière, JY ;
Fougères, R .
ACTA MATERIALIA, 2001, 49 (11) :2055-2063
[4]   Reconstruction of lattice sets from their horizontal, vertical and diagonal X-rays [J].
Barcucci, E ;
Brunetti, S ;
Del Lungo, A ;
Nivat, M .
DISCRETE MATHEMATICS, 2001, 241 (1-3) :65-78
[5]   Advances in synchrotron hard X-ray based imaging [J].
Baruchel, Jose ;
Bleuet, Pierre ;
Bravin, Alberto ;
Coan, Paola ;
Lima, Enju ;
Madsen, Anders ;
Ludwig, Wolfgang ;
Pernot, Petra ;
Susini, Jean .
COMPTES RENDUS PHYSIQUE, 2008, 9 (5-6) :624-641
[6]   Generic iterative subset algorithms for discrete tomography [J].
Batenburg, K. J. ;
Sijbers, J. .
DISCRETE APPLIED MATHEMATICS, 2009, 157 (03) :438-451
[7]   DART: A Practical Reconstruction Algorithm for Discrete Tomography [J].
Batenburg, Kees Joost ;
Sijbers, Jan .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2011, 20 (09) :2542-2553
[8]   Three-dimensional characterization of the microstructure of a metal-matrix composite by holotomography [J].
Borbély, A ;
Csikor, FF ;
Zabler, S ;
Cloetens, P ;
Biermann, H .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2004, 367 (1-2) :40-50
[9]  
Brandon D., 2008, MICROSTRUCTURAL CHAR, DOI DOI 10.1002/9780470727133
[10]   On the reconstruction of binary and permutation matrices under (binary) tomographic constraints [J].
Brunetti, S. ;
Del Lungo, A. ;
Gritzmann, P. ;
de Vries, S. .
THEORETICAL COMPUTER SCIENCE, 2008, 406 (1-2) :63-71