On Laplacian energy of graphs

被引:38
作者
Das, Kinkar Ch. [1 ]
Mojallal, Seyed Ahmad [1 ]
机构
[1] Sungkyunkwan Univ, Dept Math, Suwon 440746, South Korea
基金
新加坡国家研究基金会;
关键词
Graph; Laplacian matrix; Laplacian eigenvalues; Laplacian energy; Laplacian-energy-like invariant; UPPER-BOUNDS; MOLECULAR-ORBITALS; ZAGREB INDEXES; INVARIANT; EIGENVALUES; SQUARES; TREES; SUM;
D O I
10.1016/j.disc.2014.02.017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a graph with n vertices and m edges. Also let mu(1), mu(2), ..., mu(n-1), mu(n) = 0 be the eigenvalues of the Laplacian matrix of graph G. The Laplacian energy of the graph G is defined as LE = LE(G) = Sigma(n)(i=1) vertical bar mu(i) - 2m/n vertical bar. In this paper, we present some lower and upper bounds for LE of graph Gin terms of n, the number of edges m and the maximum degree Delta. Also we give a Nordhaus-Gaddum-type result for Laplacian energy of graphs. Moreover, we obtain a relation between Laplacian energy and Laplacian-energy-like invariant of graphs. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:52 / 64
页数:13
相关论文
共 40 条
  • [1] [Anonymous], 2009, Analysis of Complex Networks: From Biology to Linguistics, DOI DOI 10.1002/9783527627981.CH7
  • [2] Bondy J. A., 1976, Graduate Texts in Mathematics, V290
  • [3] Chang A, 2012, MATCH-COMMUN MATH CO, V68, P767
  • [4] The Laplacian spectrum of a graph
    Das, KC
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2004, 48 (5-6) : 715 - 724
  • [5] Maximizing the sum of the squares of the degrees of a graph
    Das, KC
    [J]. DISCRETE MATHEMATICS, 2004, 285 (1-3) : 57 - 66
  • [6] An improved upper bound for Laplacian graph eigenvalues
    Das, KC
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2003, 368 : 269 - 278
  • [7] Das KC, 2013, MATCH-COMMUN MATH CO, V70, P689
  • [8] Das KC, 2013, MATCH-COMMUN MATH CO, V70, P663
  • [9] Das KC, 2013, MATCH-COMMUN MATH CO, V70, P657
  • [10] On the Laplacian-energy-like invariant
    Das, Kinkar Ch.
    Gutman, Ivan
    Cevik, A. Sinan
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 442 : 58 - 68