Analytic integrability for some degenerate planar vector fields

被引:20
作者
Algaba, Antonio [1 ]
Garcia, Cristobal [1 ]
Gine, Jaume [2 ]
机构
[1] Univ Huelva, Ctr Invest Fis Teor & Matemat FIMAT, Dept Matemat, Huelva 21071, Spain
[2] Univ Lleida, Dept Matemat, Lleida 25001, Catalonia, Spain
关键词
Nonlinear differential systems; Integrability problem; Degenerate center problem; DIFFERENTIAL-SYSTEMS; NILPOTENT CENTERS; REVERSIBILITY; FOCUS;
D O I
10.1016/j.jde.2014.04.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study the analytic integrability of degenerate vector fields of the form (y(3) + 2ax(3) y + ..., -x(5) - 3ax(2)y(2) + ...) around the origin. For these vector fields it is proved that integrability does not imply formal orbital equivalence to the Hamiltonian leading part. Moreover, it is shown the existence of a system in this class which has a center but is neither analytically integrable nor formal orbital reversible. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:549 / 565
页数:17
相关论文
共 31 条
[1]   Centers of quasi-homogeneous polynomial planar systems [J].
Algaba, A. ;
Fuentes, N. ;
Garcia, C. .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2012, 13 (01) :419-431
[2]   INTEGRABILITY OF TWO DIMENSIONAL QUASI-HOMOGENEOUS POLYNOMIAL DIFFERENTIAL SYSTEMS [J].
Algaba, A. ;
Garcia, C. ;
Reyes, M. .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2011, 41 (01) :1-22
[3]   Quasi-homogeneous normal forms [J].
Algaba, A ;
Freire, E ;
Gamero, E ;
García, C .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 150 (01) :193-216
[4]   The integrability problem for a class of planar systems [J].
Algaba, A. ;
Gamero, E. ;
Garcia, C. .
NONLINEARITY, 2009, 22 (02) :395-420
[5]  
Algaba A, 2011, QUAL THEOR DYN SYST, V10, P303, DOI 10.1007/s12346-011-0046-9
[6]   ANALYTIC INTEGRABILITY FOR SOME DEGENERATE PLANAR SYSTEMS [J].
Algaba, Antonio ;
Garcia, Cristobal ;
Gine, Jaume .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2013, 12 (06) :2797-2809
[7]  
[Anonymous], 1999, TEXTS APPL MATH
[8]   REVERSIBILITY AND CLASSIFICATION OF NILPOTENT CENTERS [J].
BERTHIER, M ;
MOUSSU, R .
ANNALES DE L INSTITUT FOURIER, 1994, 44 (02) :465-494
[9]   TOPOLOGICAL EQUIVALENCE OF A PLANE VECTOR FIELD WITH ITS PRINCIPAL PART DEFINED THROUGH NEWTON POLYHEDRA [J].
BRUNELLA, M ;
MIARI, M .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1990, 85 (02) :338-366
[10]  
Bruno A.D., 1989, Local Methods in Nonlinear Differential Equations