Bifurcation of limit cycles from a centre in R4 in resonance 1:N

被引:13
作者
Buzzi, Claudio A. [2 ]
Llibre, Jaume [1 ]
Medrado, Joao C. [3 ]
Torregrosa, Joan [1 ]
机构
[1] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Catalonia, Spain
[2] IBILCE, UNESP, Sao Jose Do Rio Preto, SP, Brazil
[3] Univ Fed Goias, Inst Matemat & Estat, Goiania, Go, Brazil
来源
DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL | 2009年 / 24卷 / 01期
基金
巴西圣保罗研究基金会;
关键词
periodic orbits; limit cycles; polynomial vector fields; perturbation; resonance 1:N; HILBERTS 16TH PROBLEM;
D O I
10.1080/14689360802534492
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For every positive integer N >= 2 we consider the linear differential centre (x) over dot = Ax in R-4 with eigenvalues +/- i and +/- Ni. We perturb this linear centre inside the class of all polynomial differential systems of the form linear plus a homogeneous nonlinearity of degree N, i.e. (x) over dot Ax + epsilon F(x) where every component of F(x) is a linear polynomial plus a homogeneous polynomial of degree N. Then if the displacement function of order epsilon of the perturbed system is not identically zero, we study the maximal number of limit cycles that can bifurcate from the periodic orbits of the linear differential centre.
引用
收藏
页码:123 / 137
页数:15
相关论文
共 6 条
[1]  
[Anonymous], 2003, SPRINGER MG MATH
[2]   Averaging methods for finding periodic orbits via Brouwer degree [J].
Buica, A ;
Llibre, J .
BULLETIN DES SCIENCES MATHEMATIQUES, 2004, 128 (01) :7-22
[3]  
Christopher C., 2007, ADV COURSES MATH CRM
[4]   Centennial history of Hilbert's 16th problem [J].
Ilyashenko, Y .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 39 (03) :301-354
[5]   Hilbert's 16th problem and bifurcations of planar polynomial vector fields [J].
Li, JB .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2003, 13 (01) :47-106
[6]  
Lloyd N. G., 1978, Degree Theory