On-demand entanglement generation using dynamic single-electron sources

被引:16
作者
Hofer, Patrick P. [1 ]
Dasenbrook, David [1 ]
Flindt, Christian [2 ]
机构
[1] Univ Geneva, Dept Phys Theor, CH-1211 Geneva, Switzerland
[2] Aalto Univ, Dept Appl Phys, Aalto 00076, Finland
来源
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS | 2017年 / 254卷 / 03期
基金
芬兰科学院;
关键词
entanglement; Floquet scattering theory; Fluctuations; noise; single-electron sources; INDEPENDENT SOURCES; TRANSMISSION; NONLOCALITY;
D O I
10.1002/pssb.201600582
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We review our recent proposals for the on-demand generation of entangled few-electron states using dynamic single-electron sources. The generation of entanglement can be traced back to the single-electron entanglement produced by quantum point contacts (QPCs) acting as electronic beam splitters. The coherent partitioning of a single electron leads to entanglement between the two outgoing arms of the QPC. We describe our various approaches for generating and certifying entanglement in dynamic electronic conductors and we quantify the influence of detrimental effects such as finite electronic temperatures and other dephasing mechanisms. The prospects for future experiments are discussed and possible avenues for further developments are identified. [GRAPHICS] (a) The coherent partitioning of a single electron on a QPC leads to entanglement between the outgoing arms. The entanglement can be detected using two copies of the state. (b) A time-bin entangled state is generated by partitioning two electrons on a QPC followed by projection onto the subspace with one electron in each arm. The two-electron entanglement is due to the entanglement of the individual single-electron states. In both panels, circles represent single-electron sources and squares represent detectors.
引用
收藏
页数:11
相关论文
共 47 条
[21]   Proposal for an on-demand source of polarized electrons into the edges of a topological insulator [J].
Inhofer, Andreas ;
Bercioux, Dario .
PHYSICAL REVIEW B, 2013, 88 (23)
[22]   An electronic Mach-Zehnder interferometer [J].
Yang Ji ;
Yunchul Chung ;
D. Sprinzak ;
M. Heiblum ;
D. Mahalu ;
Hadas Shtrikman .
Nature, 2003, 422 (6930) :415-418
[23]   Quantum tomography of an electron [J].
Jullien, T. ;
Roulleau, P. ;
Roche, B. ;
Cavanna, A. ;
Jin, Y. ;
Glattli, D. C. .
NATURE, 2014, 514 (7524) :603-607
[24]   Test of Bell's inequality using the spin filter effect in ferromagnetic semiconductor microstructures [J].
Kawabata, S .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2001, 70 (05) :1210-1213
[25]   Minimal excitation states of electrons in one-dimensional wires [J].
Keeling, J. ;
Klich, I. ;
Levitov, L. S. .
PHYSICAL REVIEW LETTERS, 2006, 97 (11)
[26]   Generating spin-entangled electron pairs in normal conductors using voltage pulses [J].
Lebedev, AV ;
Lesovik, GB ;
Blatter, G .
PHYSICAL REVIEW B, 2005, 72 (24)
[27]   Entanglement in mesoscopic structures: Role of projection [J].
Lebedev, AV ;
Blatter, G ;
Beenakker, CWJ ;
Lesovik, GB .
PHYSICAL REVIEW B, 2004, 69 (23) :235312-1
[28]   Quantized dynamics of a coherent capacitor [J].
Moskalets, M. ;
Samuelsson, P. ;
Buettiker, M. .
PHYSICAL REVIEW LETTERS, 2008, 100 (08)
[29]  
Moskalets M., 2012, SCATTERING MATRIX AP
[30]   Single-electron source: Adiabatic versus nonadiabatic emission [J].
Moskalets, Michael ;
Haack, Geraldine ;
Buettiker, Markus .
PHYSICAL REVIEW B, 2013, 87 (12)