Simulation and efficiency studies of optical photon transportation and detection with plastic antineutrino detector modules

被引:12
作者
Kandemir, Mustafa [1 ,2 ]
Cakir, Altan [1 ]
机构
[1] Istanbul Tech Univ, Dept Phys Engn, TR-34469 Istanbul, Turkey
[2] Recep Tayyip Erdogan Univ, Dept Phys, TR-53100 Rize, Turkey
关键词
Antineutrino; GEANT4; Optical photon; Light collection efficiency;
D O I
10.1016/j.nima.2018.04.059
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
In this work, the simulation of optical photons is carried out in an antineutrino detector module consisting of a plastic scintillator connected to light guides and photomultipliers on both ends, which is considered to be used for remote reactor monitoring in the field of nuclear safety. Using Monte Carlo (MC) based GEANT4 simulation, numerous parameters influencing the light collection and thereby the energy resolution of the antineutrino detector module are studied: e.g., degrees of scintillator surface roughness, reflector type, and its applying method onto scintillator and light guide surface, the reflectivity of the reflector, light guide geometries and diameter of the photocathode. The impact of each parameter is investigated by looking at the detected spectrum, i.e. the number photoelectrons per depositing energy. In addition, the average light collection efficiency of the detector module and its spatial variation are calculated for each simulation setup. According to the simulation results, it is found that photocathode size, light guide shape, reflectivity of reflecting material and wrapping method show a significant impact on the light collection efficiency while scintillator surface polishing level and the choose of reflector type show relatively less impact. This study demonstrates that these parameters are very important in the design of plastic scintillator included antineutrino detectors to improve the energy resolution efficiency.
引用
收藏
页码:30 / 39
页数:10
相关论文
共 16 条
[1]   GEANT4-a simulation toolkit [J].
Agostinelli, S ;
Allison, J ;
Amako, K ;
Apostolakis, J ;
Araujo, H ;
Arce, P ;
Asai, M ;
Axen, D ;
Banerjee, S ;
Barrand, G ;
Behner, F ;
Bellagamba, L ;
Boudreau, J ;
Broglia, L ;
Brunengo, A ;
Burkhardt, H ;
Chauvie, S ;
Chuma, J ;
Chytracek, R ;
Cooperman, G ;
Cosmo, G ;
Degtyarenko, P ;
Dell'Acqua, A ;
Depaola, G ;
Dietrich, D ;
Enami, R ;
Feliciello, A ;
Ferguson, C ;
Fesefeldt, H ;
Folger, G ;
Foppiano, F ;
Forti, A ;
Garelli, S ;
Giani, S ;
Giannitrapani, R ;
Gibin, D ;
Cadenas, JJG ;
González, I ;
Abril, GG ;
Greeniaus, G ;
Greiner, W ;
Grichine, V ;
Grossheim, A ;
Guatelli, S ;
Gumplinger, P ;
Hamatsu, R ;
Hashimoto, K ;
Hasui, H ;
Heikkinen, A ;
Howard, A .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2003, 506 (03) :250-303
[2]   Detector of the reactor AntiNeutrino based on Solid-state plastic Scintillator (DANSS). Status and first results [J].
Alekseev, I. ;
Belov, V. ;
Brudanin, V. ;
Danilov, M. ;
Egorov, V. ;
Filosofov, D. ;
Fomina, M. ;
Hons, Z. ;
Kazartsev, S. ;
Kobyakin, A. ;
Kuznetsov, A. ;
Machikhiliyan, I. ;
Medvedev, D. ;
Nesterov, V. ;
Olshevsky, A. ;
Ponomarev, D. ;
Rozova, I. ;
Rumyantseva, N. ;
Rusinov, V. ;
Salamatin, A. ;
Shevchik, Ye ;
Shirchenko, M. ;
Shitov, Yu ;
Skrobova, N. ;
Starostin, A. ;
Svirida, D. ;
Tarkovsky, E. ;
Tikhomirov, I. ;
Vlasek, J. ;
Zhitnikov, I. ;
Zinatulina, D. .
INTERNATIONAL CONFERENCE ON PARTICLE PHYSICS AND ASTROPHYSICS, 2017, 798
[3]   Using Neutrinos to Monitor Nuclear Reactors: the Angra Neutrino Experiment, Simulation and Detector Status [J].
Anjos, J. C. ;
Abrahao, T. ;
Alvarenga, T. A. ;
Andrade, L. P. ;
Azzi, G. ;
Cerqueira, A. S. ;
Chimenti, P. ;
Costa, J. A. ;
Dornelas, T. I. ;
Farias, P. C. M. A. ;
Franca, F. ;
Gonzalez, L. F. G. ;
Guedes, G. P. ;
Kemp, E. ;
Lima, H. P., Jr. ;
Machado, R. ;
Nobrega, R. A. ;
Pepe, I. M. ;
Reis, A. L. M. ;
Ribeiro, D. B. S. ;
Rodrigues, O. B. ;
Santos, L. M. ;
Santos, S. M. V. ;
Simas Filho, E. F. ;
Souza, M. J. N. ;
Valdiviesso, G. A. ;
Wagner, S. .
NUCLEAR AND PARTICLE PHYSICS PROCEEDINGS, 2015, 267 :108-115
[4]   An anti-neutrino detector to monitor nuclear reactor's power and fuel composition [J].
Battaglieri, M. ;
DeVita, R. ;
Firpo, G. ;
Neuhold, P. ;
Osipenko, M. ;
Piombo, D. ;
Ricco, G. ;
Ripani, M. ;
Taiuti, M. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2010, 617 (1-3) :209-213
[5]   Nuclear Security Applications of Antineutrino Detectors: Current Capabilities and Future Prospects [J].
Bernstein, A. ;
Baldwin, G. ;
Boyer, B. ;
Goodman, M. ;
Learned, J. ;
Lund, J. ;
Reyna, D. ;
Svoboda, R. .
SCIENCE & GLOBAL SECURITY, 2010, 18 (03) :127-192
[6]   Monitoring the thermal power of nuclear reactors with a prototype cubic meter antineutrino detector [J].
Bernstein, A. ;
Bowden, N. S. ;
Misner, A. ;
Palmer, T. .
JOURNAL OF APPLIED PHYSICS, 2008, 103 (07)
[7]  
Georgadze A. S., 2016, ARXIV161005884
[8]   Light transport in long, plastic scintillators [J].
Gierlik, M. ;
Batsch, T. ;
Marcinkowski, R. ;
Moszynski, M. ;
Sworobowicz, T. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2008, 593 (03) :426-430
[9]   Reflectivity Spectra for Commonly Used Reflectors [J].
Janecek, Martin .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2012, 59 (03) :490-497
[10]   Simulating Scintillator Light Collection Using Measured Optical Reflectance [J].
Janecek, Martin ;
Moses, William W. .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2010, 57 (03) :964-970