On linear instability of solitary waves for the nonlinear Dirac equation

被引:22
作者
Comech, Andrew [1 ,2 ]
Guan, Meijiao [3 ]
Gustafson, Stephen [3 ]
机构
[1] Texas A&M Univ, College Stn, TX 77843 USA
[2] Russian Acad Sci, Inst Informat Transmiss Problems, Moscow 101447, Russia
[3] Univ British Columbia, Vancouver, BC V6T 1Z2, Canada
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 2014年 / 31卷 / 03期
基金
加拿大自然科学与工程研究理事会;
关键词
STANDING WAVES; LOCALIZED SOLUTIONS; STATIONARY STATES; STABILITY; FIELD; EXISTENCE;
D O I
10.1016/j.anihpc.2013.06.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the nonlinear Dirac equation, also known as the Soler model: i partial derivative(t)psi = -i alpha . del psi + m beta psi - (psi* beta psi)(k) beta psi, m >0, psi (x,t)is an element of C-N, x is an element of R-n, k is an element of N. We study the point spectrum of linearizations at small amplitude solitary waves in the limit omega -> m, proving that if k > 2/n, then one positive and one negative eigenvalue are present in the spectrum of the linearizations at these solitary waves with omega sufficiently close to m, so that these solitary waves are linearly unstable. The approach is based on applying the Rayleigh Schrodinger perturbation theory to the nonrelativistic limit of the equation. The results are in formal agreement with the Vakhitov-Kolokolov stability criterion. (c) 2013 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:639 / 654
页数:16
相关论文
共 44 条
[1]   STABILITY OF THE MINIMUM SOLITARY WAVE OF A NONLINEAR SPINORIAL MODEL [J].
ALVAREZ, A ;
SOLER, M .
PHYSICAL REVIEW D, 1986, 34 (02) :644-645
[2]   ENERGETIC STABILITY-CRITERION FOR A NON-LINEAR SPINORIAL MODEL [J].
ALVAREZ, A ;
SOLER, M .
PHYSICAL REVIEW LETTERS, 1983, 50 (17) :1230-1233
[3]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
[4]   On Spectral Stability of Solitary Waves of Nonlinear Dirac Equation in 1D [J].
Berkolaiko, G. ;
Comech, A. .
MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2012, 7 (02) :13-31
[5]   SPINOR SOLITON STABILITY [J].
BOGOLUBSKY, IL .
PHYSICS LETTERS A, 1979, 73 (02) :87-90
[6]  
Boussaid N., 2012, 1211336 ARXIV
[7]   Stable directions for small nonlinear Dirac standing waves [J].
Boussaid, Nabile .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 268 (03) :757-817
[8]   On Stability of Standing Waves of Nonlinear Dirac Equations [J].
Boussaid, Nabile ;
Cuccagna, Scipio .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2012, 37 (06) :1001-1056
[9]   ON THE ASYMPTOTIC STABILITY OF SMALL NONLINEAR DIRAC STANDING WAVES IN A RESONANT CASE [J].
Boussaid, Nabile .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2008, 40 (04) :1621-1670
[10]   EXISTENCE OF LOCALIZED SOLUTIONS FOR A CLASSICAL NONLINEAR DIRAC FIELD [J].
CAZENAVE, T ;
VAZQUEZ, L .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1986, 105 (01) :35-47