Bayes bandwidth selection in kernel density estimation with censored data

被引:24
作者
Kulasekera, K. B. [1 ]
Padgett, W. J.
机构
[1] Clemson Univ, Dept Math Sci, Clemson, SC 29634 USA
[2] Univ S Carolina, Dept Stat, Columbia, SC 29208 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
density estimation; bandwidth selection; Bayesian estimation; prior distribution; spill-over; asymmetric kernels;
D O I
10.1080/10485250600556744
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Problems with censored data arise frequently in survival analyses and reliability applications. The estimation of the density function of the failure times is often of interest. Two inherent problems in density estimation for lifetime data are the spill-over at the origin and the smoothing parameter selection. To address these issues, we propose the use of asymmetric kernels ( like inverse Gaussian) with bandwidths selected by a Bayes criterion. We show strong pointwise consistency of the density estimator, and for suitable choices of the prior, we show that one can obtain meaningful bandwidths with the same rates of convergence as for the classical asymptotically optimal bandwidths.
引用
收藏
页码:129 / 143
页数:15
相关论文
共 11 条
[1]  
Chaubey Y.P., 1996, Statist. Decis., V14, P1
[2]   Probability density function estimation using gamma kernels [J].
Chen, SX .
ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2000, 52 (03) :471-480
[3]  
CHIIKARA RS, 1989, INVERSE GAUSSIAN DIS
[4]   Bayesian approach to the choice of smoothing parameter in kernel density estimation [J].
Gangopadhyay, AK ;
Cheung, KN .
JOURNAL OF NONPARAMETRIC STATISTICS, 2002, 14 (06) :655-664
[5]  
HARWELL M, 1995, THESIS CLEMSON U
[6]  
Ihaka R., 1996, J COMPUTATIONAL GRAP, V5, P299, DOI [10.1080/10618600.1996.10474713, 10.2307/1390807, DOI 10.1080/10618600.1996.10474713]
[7]   NONPARAMETRIC-ESTIMATION FROM INCOMPLETE OBSERVATIONS [J].
KAPLAN, EL ;
MEIER, P .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1958, 53 (282) :457-481
[8]   Local bandwidth selection for kernel density estimation from right-censored data based on asymptotic mean absolute error [J].
Kuhn, JW ;
Padgett, WJ .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 30 (07) :4375-4384
[9]   ASYMPTOTICALLY OPTIMAL BANDWIDTH SELECTION FOR KERNEL DENSITY ESTIMATORS FROM RANDOMLY RIGHT-CENSORED SAMPLES [J].
MARRON, JS ;
PADGETT, WJ .
ANNALS OF STATISTICS, 1987, 15 (04) :1520-1535
[10]   Density estimation using inverse and reciprocal inverse Gaussian kernels [J].
Scaillet, O .
JOURNAL OF NONPARAMETRIC STATISTICS, 2004, 16 (1-2) :217-226