Experimental demonstration of a graph state quantum error-correction code

被引:101
作者
Bell, B. A. [1 ]
Herrera-Marti, D. A. [2 ]
Tame, M. S. [3 ,4 ]
Markham, D. [5 ]
Wadsworth, W. J. [6 ]
Rarity, J. G. [1 ]
机构
[1] Univ Bristol, Dept Elect & Elect Engn, Ctr Commun Res, Bristol BS8 1UB, Avon, England
[2] Natl Univ Singapore, Ctr Quantum Technol, Singapore 117543, Singapore
[3] Univ KwaZulu Natal, Sch Chem & Phys, ZA-4001 Durban, South Africa
[4] Univ KwaZulu Natal, Natl Inst Theoret Phys, ZA-4001 Durban, South Africa
[5] Telecom ParisTech, Dept Informat & Reseaux, CNRS LTCI, F-75214 Paris 13, France
[6] Univ Bath, Dept Phys, Ctr Photon & Photon Mat, Bath BA2 7AY, Avon, England
来源
NATURE COMMUNICATIONS | 2014年 / 5卷
基金
英国工程与自然科学研究理事会; 新加坡国家研究基金会;
关键词
CLUSTER STATES; COMPUTATION; SCHEME; ENTANGLEMENT; REALIZATION; TOLERANCE;
D O I
10.1038/ncomms4658
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Scalable quantum computing and communication requires the protection of quantum information from the detrimental effects of decoherence and noise. Previous work tackling this problem has relied on the original circuit model for quantum computing. However, recently a family of entangled resources known as graph states has emerged as a versatile alternative for protecting quantum information. Depending on the graph's structure, errors can be detected and corrected in an efficient way using measurement-based techniques. Here we report an experimental demonstration of error correction using a graph state code. We use an all-optical setup to encode quantum information into photons representing a four-qubit graph state. We are able to reliably detect errors and correct against qubit loss. The graph we realize is setup independent, thus it could be employed in other physical settings. Our results show that graph state codes are a promising approach for achieving scalable quantum information processing.
引用
收藏
页数:10
相关论文
共 70 条
[51]   A fault-tolerant one-way quantum computer [J].
Raussendorf, R. ;
Harrington, J. ;
Goyal, K. .
ANNALS OF PHYSICS, 2006, 321 (09) :2242-2270
[52]   Measurement-based quantum computation on cluster states [J].
Raussendorf, R ;
Browne, DE ;
Briegel, HJ .
PHYSICAL REVIEW A, 2003, 68 (02) :32
[53]   A one-way quantum computer [J].
Raussendorf, R ;
Briegel, HJ .
PHYSICAL REVIEW LETTERS, 2001, 86 (22) :5188-5191
[54]   Fault-tolerant quantum computation with high threshold in two dimensions [J].
Raussendorf, Robert ;
Harrington, Jim .
PHYSICAL REVIEW LETTERS, 2007, 98 (19)
[55]  
Schlingemann D, 2003, QUANTUM INF COMPUT, V3, P431
[56]   Quantum error-correcting codes associated with graphs [J].
Schlingemann, D ;
Werner, RF .
PHYSICAL REVIEW A, 2002, 65 (01) :8
[57]  
Schlingemann D, 2002, QUANTUM INF COMPUT, V2, P307
[58]   SCHEME FOR REDUCING DECOHERENCE IN QUANTUM COMPUTER MEMORY [J].
SHOR, PW .
PHYSICAL REVIEW A, 1995, 52 (04) :R2493-R2496
[59]   A direct approach to fault-tolerance in measurement-based quantum computation via teleportation [J].
Silva, Marcus ;
Danos, Vincent ;
Kashefi, Elham ;
Ollivier, Harold .
NEW JOURNAL OF PHYSICS, 2007, 9
[60]   Error correcting codes in quantum theory [J].
Steane, AM .
PHYSICAL REVIEW LETTERS, 1996, 77 (05) :793-797