Well-posedness of the second-order linear singular Dirichlet problem

被引:0
作者
Lomtatidze, Alexander [1 ,2 ]
Oplustil, Zdenek [1 ]
机构
[1] Brno Univ Technol, Fac Mech Engn, Inst Math, Tech 2, Brno 61669, Czech Republic
[2] Acad Sci Czech Republic, Branch Brno, Inst Math, Brno 61662, Czech Republic
关键词
Singular Dirichlet problem; well-posedness;
D O I
10.1515/gmj-2015-0023
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Conditions guaranteeing well-posedness of the problem u '' = p(0)(t)u + q(0)(t), u(a) = 0, u(b) = 0, are established. Here p(0),q(0): ]a,b[-> R are locally Lebesgue integrable functions and may have singularities at t = a and t = b
引用
收藏
页码:409 / 419
页数:11
相关论文
共 50 条
  • [1] Fredholm alternative for the second-order singular Dirichlet problem
    Lomtatidze, Alexander
    Oplustil, Zdenek
    BOUNDARY VALUE PROBLEMS, 2014,
  • [2] Fredholm alternative for the second-order singular Dirichlet problem
    Alexander Lomtatidze
    Zdeněk Opluštil
    Boundary Value Problems, 2014
  • [3] Fredholm's third theorem for second-order singular Dirichlet problem
    Lomtatidze, Alexander
    Oplustil, Zdenek
    BOUNDARY VALUE PROBLEMS, 2014,
  • [4] Fredholm’s third theorem for second-order singular Dirichlet problem
    Alexander Lomtatidze
    Zdeněk Opluštil
    Boundary Value Problems, 2014
  • [5] Well-posedness of a fully nonlinear evolution inclusion of second order
    Bacho, Aras
    JOURNAL OF ELLIPTIC AND PARABOLIC EQUATIONS, 2024, 10 (01) : 499 - 516
  • [6] Well-posedness of a fully nonlinear evolution inclusion of second order
    Aras Bacho
    Journal of Elliptic and Parabolic Equations, 2024, 10 : 499 - 516
  • [7] Well-posedness of second order evolution equation on discrete time
    Castro, Airton
    Cuevas, Claudio
    Lizama, Carlos
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2010, 16 (10) : 1165 - 1178
  • [8] Second order expansion for the solution to a singular Dirichlet problem
    Mi, Ling
    Liu, Bin
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 270 : 401 - 412
  • [9] Well-posedness of linear singular evolution equations in Banach spaces: theoretical results
    Bortolan, M. C.
    Brito, M. C. A.
    Dantas, F.
    ANALYSIS MATHEMATICA, 2025, : 99 - 128
  • [10] Well-posedness of a non-local abstract Cauchy problem with a singular integral
    Jiang, Haiyan
    Lu, Tiao
    Zhu, Xiangjiang
    FRONTIERS OF MATHEMATICS IN CHINA, 2019, 14 (01) : 77 - 93