Cryogenic strength improvement by utilizing room-temperature deformation twinning in a partially recrystallized VCrMnFeCoNi high-entropy alloy

被引:397
作者
Jo, Y. H. [1 ]
Jung, S. [1 ]
Choi, W. M. [1 ]
Sohn, S. S. [1 ]
Kim, H. S. [1 ]
Lee, B. J. [1 ]
Kim, N. J. [2 ]
Lee, S. [1 ]
机构
[1] Pohang Univ Sci & Technol, Ctr High Entropy Alloys, Pohang 790784, South Korea
[2] Pohang Univ Sci & Technol, Grad Inst Ferrous Technol, Pohang 790784, South Korea
基金
新加坡国家研究基金会;
关键词
MECHANICAL-PROPERTIES; TENSILE PROPERTIES; GRAIN-SIZE; MICROSTRUCTURE; STABILITY; EVOLUTION; BEHAVIOR; CRMNFECONI; ELEMENTS; GROWTH;
D O I
10.1038/ncomms15719
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The excellent cryogenic tensile properties of the CrMnFeCoNi alloy are generally caused by deformation twinning, which is difficult to achieve at room temperature because of insufficient stress for twinning. Here, we induced twinning at room temperature to improve the cryogenic tensile properties of the CrMnFeCoNi alloy. Considering grain size effects on the critical stress for twinning, twins were readily formed in the coarse microstructure by cold rolling without grain refinement by hot rolling. These twins were retained by partial recrystallization and played an important role in improving strength, allowing yield strengths approaching 1GPa. The persistent elongation up to 46% as well as the tensile strength of 1.3 GPa are attributed to additional twinning in both recrystallized and non-recrystallization regions. Our results demonstrate that non-recrystallized grains, which are generally avoided in conventional alloys because of their deleterious effect on ductility, can be useful in achieving high-strength high-entropy alloys.
引用
收藏
页数:8
相关论文
共 46 条
[1]   Nanostructured steel with high work-hardening by the exploitation of the thermal stability of mechanically induced twins [J].
Bouaziz, O. ;
Scott, C. P. ;
Petitgand, G. .
SCRIPTA MATERIALIA, 2009, 60 (08) :714-716
[2]   Electron backscatter diffraction study of dislocation content of a macrozone in hot-rolled Ti-6Al-4V alloy [J].
Britton, T. Ben ;
Birosca, Soran ;
Preuss, Michael ;
Wilkinson, Angus J. .
SCRIPTA MATERIALIA, 2010, 62 (09) :639-642
[3]   Microstructural development in equiatomic multicomponent alloys [J].
Cantor, B ;
Chang, ITH ;
Knight, P ;
Vincent, AJB .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2004, 375 :213-218
[4]   Microstructure and electrochemical properties of high entropy alloys - a comparison with type-304 stainless steel [J].
Chen, YY ;
Duval, T ;
Hung, UD ;
Yeh, JW ;
Shih, HC .
CORROSION SCIENCE, 2005, 47 (09) :2257-2279
[5]   Thermodynamic calculation on the stability of (Fe,Mn)3AlC carbide in high aluminum steels [J].
Chin, Kwang-Geun ;
Lee, Hyuk-Joong ;
Kwak, Jai-Hyun ;
Kang, Jung-Yoon ;
Lee, Byeong-Joo .
JOURNAL OF ALLOYS AND COMPOUNDS, 2010, 505 (01) :217-223
[6]  
De Boer F.R., 1989, COHESION METALS TRAN
[7]   Improved tensile properties of partially recrystallized submicron grained TWIP steel [J].
Dini, G. ;
Najafizadeh, A. ;
Ueji, R. ;
Monir-Vaghefi, S. M. .
MATERIALS LETTERS, 2010, 64 (01) :15-18
[8]   Influence of grain size and stacking-fault energy on deformation twinning in fcc metals [J].
El-Danaf, E ;
Kalidindi, SR ;
Doherty, RD .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1999, 30 (05) :1223-1233
[9]   Tensile properties of high- and medium-entropy alloys [J].
Gali, A. ;
George, E. P. .
INTERMETALLICS, 2013, 39 :74-78
[10]   A fracture-resistant high-entropy alloy for cryogenic applications [J].
Gludovatz, Bernd ;
Hohenwarter, Anton ;
Catoor, Dhiraj ;
Chang, Edwin H. ;
George, Easo P. ;
Ritchie, Robert O. .
SCIENCE, 2014, 345 (6201) :1153-1158