A gathering process in Artin braid groups

被引:0
作者
Esyp, Evgeinj S. [1 ]
Kazachkov, Ilya V. [1 ]
机构
[1] Russian Acad Sci, Siberian Branch, Math Inst, Omsk Branch, Omsk 644099, Russia
关键词
braid groups; normal forms; rewriting systems;
D O I
10.1142/S0218196706003190
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we construct a gathering process by the means of which we obtain new normal forms in braid groups. The new normal forms generalize Artin-Markoff normal forms and possess an extremely natural geometric description. In the two last sections of the paper we discuss the implementation of the introduced gathering process and the questions that arose in our work. This discussion leads us to some interesting observations, in particular, we offer a method of generating a random braid.
引用
收藏
页码:771 / 795
页数:25
相关论文
共 50 条
[21]   Congruence subgroups of braid groups [J].
Stylianakis, Charalampos .
INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2018, 28 (02) :345-364
[22]   Abstract commensurators of braid groups [J].
Leininger, Christopher J. ;
Margalit, Dan .
JOURNAL OF ALGEBRA, 2006, 299 (02) :447-455
[23]   Braid groups in complex Grassmannians [J].
Manfredini, Sandro ;
Settepanella, Simona .
TOPOLOGY AND ITS APPLICATIONS, 2014, 176 :51-56
[24]   Finite quotients of braid groups [J].
Alice Chudnovsky ;
Kevin Kordek ;
Qiao Li ;
Caleb Partin .
Geometriae Dedicata, 2020, 207 :409-416
[25]   Note on the residual finiteness of Artin groups [J].
Blasco-Garcia, Ruben ;
Juhasz, Arye ;
Paris, Luis .
JOURNAL OF GROUP THEORY, 2018, 21 (03) :531-537
[26]   On some torus knot groups and submonoids of the braid groups [J].
Gobet, Thomas .
JOURNAL OF ALGEBRA, 2022, 607 :260-289
[27]   Artin groups of type B and D [J].
Crisp, J ;
Paris, L .
ADVANCES IN GEOMETRY, 2005, 5 (04) :607-636
[28]   On some torus knot groups and submonoids of the braid groups [J].
Gobet, Thomas .
JOURNAL OF ALGEBRA, 2022, 607 :260-289
[29]   Orderings on Artin-Tits groups [J].
Sibert, Herve .
INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2008, 18 (06) :1035-1066
[30]   Cactus groups, twin groups, and right-angled Artin groups [J].
Bellingeri, Paolo ;
Chemin, Hugo ;
Lebed, Victoria .
JOURNAL OF ALGEBRAIC COMBINATORICS, 2024, 59 (01) :153-178