Monitoring Electrical and Thermal Characteristics of HTS Cable Systems via Time-Frequency Domain Reflectometry

被引:14
|
作者
Lee, Geon Seok [1 ]
Kwon, Gu-Young [1 ]
Bang, Su Sik [1 ]
Lee, Yeong Ho [1 ]
Sohn, Song-Ho [2 ]
Park, Kijun [2 ]
Shin, Yong-June [1 ]
机构
[1] Yonsei Univ, Sch Elect & Elect Engn, Seoul 03722, South Korea
[2] Korea Elect Power Corp, Res Inst, Daejeon 34056, South Korea
基金
新加坡国家研究基金会;
关键词
High-temperature superconducting (HTS) cable systems; instantaneous frequency (IF); joint box; time-frequency domain reflectometry (TFDR); Wigner-Ville distribution;
D O I
10.1109/TASC.2017.2652330
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A high-temperature superconducting (HTS) cable system with the 22.9 kV, 50 MVA, and 410 m length is installed and operated at 154 kV Icheon substation of Korea Electric Power Corporation (KEPCO). Unfortunately, it is a difficult task to diagnose and monitor electrical and thermal characteristics of the HTS cable system in a real-time manner. In order to protect operational failures of grid-connected HTS cable systems, this paper proposes time-frequency domain reflectometry (TFDR) and analysis techniques, i.e., time-frequency cross correlation and instantaneous frequency estimation. To verify the performance of the proposed method, the temperature is changed via the cryogenic refrigeration system and the status of the grid-connected HTS cable is monitored via TFDR in a real-time manner.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Abnormality Monitoring for Three-Phase HTS Cable via Time-Frequency Domain Reflectometry
    Bang, Su Sik
    Shin, Yong-June
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2021, 31 (05)
  • [2] Monitoring Method for an Unbalanced Three-Phase HTS Cable System via Time-Frequency Domain Reflectometry
    Lee, Geon Seok
    Ji, Gyeong Hwan
    Kwon, Gu-Young
    Bang, Su Sik
    Lee, Yeong Ho
    Sohn, Song-Ho
    Park, Kijun
    Shin, Yong-June
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2018, 28 (04)
  • [3] Health Monitoring of Power Cable via Joint Time-Frequency Domain Reflectometry
    Wang, Jingjiang
    Stone, Philip E. C.
    Coats, David
    Shin, Yong-June
    Dougal, Roger A.
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2011, 60 (03) : 1047 - 1053
  • [4] Industrial Applications of Cable Diagnostics and Monitoring Cables via Time-Frequency Domain Reflectometry
    Lee, Hyeong Min
    Lee, Geon Seok
    Kwon, Gu-Young
    Bang, Su Sik
    Shin, Yong-June
    IEEE SENSORS JOURNAL, 2021, 21 (02) : 1082 - 1091
  • [5] Condition Monitoring of Cable Aging via Time-Frequency Domain Reflectometry in Real-Time
    Lee, C. -K.
    Chang, S. J.
    Jung, M. K.
    Shin, Y. -J.
    2017 IEEE CONFERENCE ON ELECTRICAL INSULATION AND DIELECTRIC PHENOMENON (CEIDP), 2017, : 290 - 294
  • [6] Time-Frequency Domain Reflectometry for Live HTS Cable System via Inductive Couplers and Neural Network
    Lee, Yeong Ho
    Shin, Yong-June
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2021, 31 (05)
  • [7] Classification of Faults in Multicore Cable via Time-Frequency Domain Reflectometry
    Bang, Su Sik
    Shin, Yong-June
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2020, 67 (05) : 4163 - 4171
  • [8] Load impedance measurement on a coaxial cable via time-frequency domain reflectometry
    Kwak, Ki-Seok
    Yoon, Tae Sung
    Park, Jin Bae
    2006 SICE-ICASE INTERNATIONAL JOINT CONFERENCE, VOLS 1-13, 2006, : 5977 - +
  • [9] Evaluation of the load impedance in coaxial cable via time-frequency domain reflectometry
    Shin, YJ
    Powers, EJ
    Choe, TS
    Sung, SH
    Yook, JG
    Park, JB
    ADVANCED SIGNAL PROCESSING ALGORITHMS, ARCHITECTURES, AND IMPLEMENTATIONS XIII, 2003, 5205 : 38 - 46
  • [10] Detection and estimation of a fault on coaxial cable via time-frequency domain reflectometry
    Choe, TS
    Hong, CY
    Seong, E
    Wook, JG
    Park, JB
    Shin, YJ
    Powers, EJ
    IMTC/O3: PROCEEDINGS OF THE 20TH IEEE INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE, VOLS 1 AND 2, 2003, : 190 - 195