Thermally conductive high-density polyethylene as novel phase-change material: Application-relevant long-term stability

被引:11
作者
Weingrill, H. M. [1 ,2 ]
Resch-Fauster, K. [1 ]
Lucyshyn, T. [2 ]
Zauner, C. [3 ]
机构
[1] Univ Leoben, Mat Sci & Testing Polymers, Otto Gloeckel Str 2, A-8700 Leoben, Austria
[2] Univ Leoben, Polymer Proc, Otto Gloeckel Str 2, A-8700 Leoben, Austria
[3] Austrian Inst Technol, Sustainable Thermal Energy Syst, Giefinggasse 2, A-1020 Vienna, Austria
关键词
ageing; crystallization; degradation; rheology; thermal properties; MECHANICAL-PROPERTIES; ENERGY STORAGE; ENHANCEMENT; DEGRADATION; BEHAVIOR;
D O I
10.1002/app.48269
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
The long-term stability of thermally conductive high-density polyethylene (HDPE)-based compounds as phase-change material (PCM) is investigated. For this purpose, the HDPE's thermal conductivity (TC) is first enhanced via compounding two different filler types (expanded graphite and aluminum) into the polymeric matrix. Bulky specimens of these compounds are then stored in air for up to 7289 h in the melt state to investigate the compounds' long-term stability as PCM. Their thermo-oxidative/thermal stability and their ability to maintain the isotropic material character (homogeneous distribution of the incorporated particles) is investigated. The compounds' degradation behavior is monitored via Fourier-transform infrared spectroscopy and the maintenance of the homogeneous filler distribution is examined via a combined differential scanning calorimetry/thermogravimetric analysis mapping of each exposed specimen. The storage capacity decreases minimally after 7289 h of exposure. Furthermore, the incorporated filler particles enhance the thermo-oxidative stability of HDPE as PCM. Consequently, thermally conductive HDPE is a highly interesting PCM. (c) 2019 The Authors. Journal of Applied Polymer Science published by Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019, 136, 48269.
引用
收藏
页数:10
相关论文
共 37 条
[1]   Anomalous behavior of thermal conductivity and diffusivity in polymeric materials filled with metallic particles [J].
Boudenne, A ;
Ibos, L ;
Géhin, E ;
Fois, M ;
Majesté, JC .
JOURNAL OF MATERIALS SCIENCE, 2005, 40 (16) :4163-4167
[2]   Thermal conductivity of polymer-based composites: Fundamentals and applications [J].
Chen, Hongyu ;
Ginzburg, Valeriy V. ;
Yang, Jian ;
Yang, Yunfeng ;
Liu, Wei ;
Huang, Yan ;
Du, Libo ;
Chen, Bin .
PROGRESS IN POLYMER SCIENCE, 2016, 59 :41-85
[3]   Thermo and photo-oxidation of functionalized metallocene high density polyethylene: Effect of hydrophilic groups [J].
de la Orden, M. U. ;
Montes, J. M. ;
Martinez Urreaga, J. ;
Bento, A. ;
Ribeiro, M. R. ;
Perez, E. ;
Cerrada, M. L. .
POLYMER DEGRADATION AND STABILITY, 2015, 111 :78-88
[4]  
Ehrenstein G.W., 2004, Thermal Analysis of Plastics-Theory and Practice
[5]  
Everett D. H., 2010, BASIC PRINCIPLES COL
[6]   Thermal conductivity enhancement of phase change materials for thermal energy storage: A review [J].
Fan, Liwu ;
Khodadadi, J. M. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2011, 15 (01) :24-46
[7]   Thermal conductivity of exfoliated graphite nanocomposites [J].
Fukushima, H. ;
T Drzal, L. ;
Rook, B. P. ;
Rich, M. J. .
JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2006, 85 (01) :235-238
[8]   Thermal energy storage: Challenges and the role of particle technology [J].
Ge, Zhiwei ;
Li, Yongliang ;
Li, Dacheng ;
Sun, Ze ;
Jin, Yi ;
Liu, Chuanping ;
Li, Chuan ;
Leng, Guanghui ;
Ding, Yulong .
PARTICUOLOGY, 2014, 15 :2-8
[9]   The effect of metals on thermal degradation of polyethylenes [J].
Gorghiu, LM ;
Jipa, S ;
Zaharescu, T ;
Setnescu, R ;
Mihalcea, I .
POLYMER DEGRADATION AND STABILITY, 2004, 84 (01) :7-11
[10]   Thermal conductivity of platelet-filled polymer composites [J].
Hill, RF ;
Supancic, PH .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2002, 85 (04) :851-857