Profinite Teichmuller theory

被引:17
作者
Boggi, Marco [1 ]
机构
[1] Inst Math Jussieu, F-75013 Paris, France
关键词
Teichmuller theory; moduli of curves; profinite groups; fundamental groups; Riemann surfaces; Galois theory;
D O I
10.1002/mana.200510405
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For 2g - 2 + n > 0, let Gamma(g,n) be the Teichmuller group of a compact Riemann surface of genus g with n points removed S-g,S-n, i.e., the group of homotopy classes of diffeomorphisms of S-g,S-n which preserve the orientation of S-g,S-n and a given order of its punctures. There is a natural faithful representation Gamma(g,n) --> Out(pi(1) (S-g,S-n)). For any given finite index subgroup Gamma(lambda) of Gamma(g,n) the congruence subgroup problem asks whether there exists a finite index characteristic subgroup K of pi(1) (S-g,S-n) such that the kernel of the induced representation Gamma(g,n) --> Out(pi(1) (S-g,S-n)/K) is contained in Gamma(lambda). The main result of the paper is an affirmative answer to this question. (C) 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
引用
收藏
页码:953 / 987
页数:35
相关论文
共 20 条