On left and right uninorms on a finite chain

被引:42
作者
Mas, M [1 ]
Monserrat, M [1 ]
Torrens, J [1 ]
机构
[1] Univ Illes Balears, Dpt Ciencies Matemat & Informat, Palma de Mallorca 07122, Spain
关键词
t-norm; t-conorm; uninorm; non-commutativity; smoothness; finite chain;
D O I
10.1016/j.fss.2003.11.002
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The main concern of this paper is to introduce and characterize the class of operators on a finite chain L, having the same properties of pseudosmooth uninorms but without commutativity. Moreover, in this case it will only be required the existence of a one-side neutral element. These operators are characterized as combinations of AND and OR operators of directed algebras (smooth t-norms and smooth t-conorms) and the case of pseudosmooth uninorms is retrieved for the commutative case. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:3 / 17
页数:15
相关论文
共 12 条
[1]   Triangular norms on product lattices [J].
De Baets, B ;
Mesiar, R .
FUZZY SETS AND SYSTEMS, 1999, 104 (01) :61-75
[2]   Smooth associative operations on finite ordinal scales [J].
Fodor, J .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2000, 8 (06) :791-795
[3]   Structure of uninorms [J].
Fodor, JC ;
Yager, RR ;
Rybalov, A .
INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS, 1997, 5 (04) :411-427
[4]  
Godo L., 1988, Proceedings of the Eighteenth International Symposium on Multiple-Valued Logic (Cat. No.88CH2546-0), P157, DOI 10.1109/ISMVL.1988.5169
[5]  
Klement E. P., 2000, Triangular Norms
[6]   On the associativity functional equation [J].
Marichal, JL .
FUZZY SETS AND SYSTEMS, 2000, 114 (03) :381-389
[7]  
Mas M, 1999, INT J INTELL SYST, V14, P909, DOI 10.1002/(SICI)1098-111X(199909)14:9<909::AID-INT4>3.0.CO
[8]  
2-B
[9]  
Mas M, 2001, INT J UNCERTAIN FUZZ, V9, P491, DOI 10.1016/S0218-4885(01)00090-9
[10]   t-operators [J].
Mas, M ;
Mayor, G ;
Torrens, J .
INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS, 1999, 7 (01) :31-50