Transition Function for Closed-Form Representation of Metasurface Reactance

被引:26
作者
Mencagli, Mario, Jr. [1 ]
Martini, Enrica [1 ,2 ]
Maci, Stefano [1 ]
机构
[1] Univ Siena, Dept Informat Engn & Math, I-53100 Siena, Italy
[2] Wave Up Srl, I-50126 Florence, Italy
关键词
Metasurfaces; surface impedance; surface-waves; WAVES;
D O I
10.1109/TAP.2015.2500264
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Metasurfaces are thin metamaterials used for manipulating propagation of plane waves and surface-waves (SWs). They can be characterized by homogenized-boundary conditions, which, in absence of losses, can be represented through an equivalent reactance. In this paper, we introduce a general representation of isotropic frequency-dependent reactance which is valid along the dispersion curve of the relevant TM SW. This representation is written in terms of a transition function derived from a manipulation of the Cardano's formula for third-degree algebraic equations. Throughout a large portion of the dispersion curve, this transition function depends on one parameter only, which is an equivalent quasi-static capacitance. Approaching the Floquet-Bloch region, where many higher order Floquet modes are excited, two additional parameters should be extracted from the full-wave data to complete the transitional representation of the reactance until the upper boundary of the Brillouin region. The final formula is valid for a generic isotropic reactance and for an anisotropic reactance when the direction of propagation is along a symmetry axis of the unit cell element.
引用
收藏
页码:136 / 145
页数:10
相关论文
共 21 条
[1]  
Cardano G.., 1968, The great art
[2]  
or, The rules of algebra
[3]   Realization and Measurement of Broadside Beam Modulated Metasurface Antennas [J].
Faenzi, M. ;
Caminita, F. ;
Martini, E. ;
De Vita, P. ;
Minatti, G. ;
Sabbadini, M. ;
Maci, S. .
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2016, 15 :610-613
[4]   Scalar and Tensor Holographic Artificial Impedance Surfaces [J].
Fong, Bryan H. ;
Colburn, Joseph S. ;
Ottusch, John J. ;
Visher, John L. ;
Sievenpiper, Daniel F. .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2010, 58 (10) :3212-3221
[5]   Surface Waves Supported by Metasurfaces With Self-Complementary Geometries [J].
Gonzalez-Ovejero, David ;
Martini, Enrica ;
Maci, Stefano .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2015, 63 (01) :250-260
[6]   An Overview of the Theory and Applications of Metasurfaces: The Two-Dimensional Equivalents of Metamaterials [J].
Holloway, Christopher L. ;
Kuester, Edward F. ;
Gordon, Joshua A. ;
O'Hara, John ;
Booth, Jim ;
Smith, David R. .
IEEE ANTENNAS AND PROPAGATION MAGAZINE, 2012, 54 (02) :10-35
[7]   Simple and accurate analytical model of planar grids and high-impedance surfaces, comprising metal strips or patches [J].
Luukkonen, Olli ;
Simovski, Constantin ;
Granet, Gerard ;
Goussetis, George ;
Lioubtchenko, Dmitri ;
Raisanen, Antti V. ;
Tretyakov, Sergei A. .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2008, 56 (06) :1624-1632
[8]   A pole-zero matching method for EBG surfaces composed of a dipole FSS printed on a grounded dielectric slab [J].
Maci, S ;
Caiazzo, M ;
Cucini, A ;
Casaletti, M .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2005, 53 (01) :70-81
[9]   Metasurfing: Addressing Waves on Impenetrable Metasurfaces [J].
Maci, S. ;
Minatti, G. ;
Casaletti, M. ;
Bosiljevac, Marko .
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2011, 10 :1499-1502
[10]   Metasurface transformation for surface wave control [J].
Martini, E. ;
Mencagli, M., Jr. ;
Maci, S. .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2015, 373 (2049)