Hybrid particle swarm optimization with spiral-shaped mechanism for feature selection

被引:137
|
作者
Chen, Ke [1 ]
Zhou, Feng-Yu [1 ]
Yuan, Xian-Feng [2 ]
机构
[1] Shandong Univ, Sch Control Sci & Engn, Jinan 250061, Shandong, Peoples R China
[2] Shandong Univ, Sch Mech Elect & Informat Engn, Weihai 264209, Peoples R China
基金
中国国家自然科学基金;
关键词
Particle swarm optimization; Feature selection; Classification; Optimization; ANT COLONY OPTIMIZATION; UNSUPERVISED FEATURE-SELECTION; INTEGRATING FEATURE-SELECTION; REDUNDANCY FEATURE-SELECTION; FEATURE SUBSET-SELECTION; GENE SELECTION; DIFFERENTIAL EVOLUTION; KRILL HERD; ALGORITHM; CLASSIFICATION;
D O I
10.1016/j.eswa.2019.03.039
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The "curse of dimensionality" is one of the largest problems that influences the quality of the optimization process in most data mining, pattern recognition, and machine learning tasks. Using high dimensional datasets to train a classification model may reduce the generalization performance of the learned model. In addition, high dimensionality of the dataset results in high computational and memory costs. Feature selection is an important data preprocessing approach in many practical application domains that are relevant to expert and intelligent systems. Feature selection aims at selecting a subset of informative and relevant features from an original feature dataset. Therefore, using a feature selection approach to process the original data prior to the learning process is essential for enhancing the performance on the classification task. In this paper, hybrid particle swarm optimization with a spiral shaped mechanism (HPSO-SSM) is proposed for selecting the optimal feature subset for classification via a wrapper-based approach. In HPSO-SSM, we make three improvements: First, a logistic map sequence is used to enhance the diversity in the search process. Second, two new parameters are introduced into the original position update formula, which can effectively improve the position quality of the next generation. Finally, a spiral-shaped mechanism is adopted as a local search operator around the known optimal solution region. For a complete evaluation, the proposed HPSO-SSM method is compared with six state-of-the-art meta-heuristic optimization algorithms, ten well-known wrapper-based feature selection techniques, and six classic filter-based feature selection methods. Various assessment indicators are used to properly evaluate and compare the performances of these approaches on twenty classic benchmark classification datasets from the UCI machine learning repository. According to the experimental results and statistical tests, the developed methods effectively and efficiently improve the classification accuracy compared with other wrapper-based approaches and filter-based approaches. The results demonstrate the high performance of the HPSO-SSM method in searching the feasible feature space and selecting the most informative attributes for solving classification problems. Therefore, the HPSO-SSM method has broad application prospects as a new feature selection approach. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:140 / 156
页数:17
相关论文
共 50 条
  • [1] Hybrid Particle Swarm Optimization Feature Selection for Crime Classification
    Anuar, Syahid
    Selamat, Ali
    Sallehuddin, Roselina
    NEW TRENDS IN INTELLIGENT INFORMATION AND DATABASE SYSTEMS, 2015, 598 : 101 - 110
  • [2] Hybrid particle swarm optimization algorithm for fault feature selection
    Taiyuan University of Technology, Taiyuan 030024, China
    不详
    Xitong Fangzhen Xuebao / Journal of System Simulation, 2008, 20 (15): : 4041 - 4044
  • [3] HYBRID GRAY WOLF AND PARTICLE SWARM OPTIMIZATION FOR FEATURE SELECTION
    El-Kenawy, El-Sayed
    Eid, Marwa
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2020, 16 (03): : 831 - 844
  • [4] Probe mechanism based particle swarm optimization for feature selection
    Zhang, Hongbo
    Qin, Xiwen
    Gao, Xueliang
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2024, 27 (06): : 8393 - 8411
  • [5] An hybrid particle swarm optimization with crow search algorithm for feature selection
    Adamu, Abdulhameed
    Abdullahi, Mohammed
    Junaidu, Sahalu Balarabe
    Hassan, Ibrahim Hayatu
    MACHINE LEARNING WITH APPLICATIONS, 2021, 6
  • [6] Hybrid particle swarm optimization algorithm for text feature selection problems
    Nachaoui, Mourad
    Lakouam, Issam
    Hafidi, Imad
    NEURAL COMPUTING & APPLICATIONS, 2024, 36 (13): : 7471 - 7489
  • [7] Hybrid particle swarm optimization algorithm for text feature selection problems
    Mourad Nachaoui
    Issam Lakouam
    Imad Hafidi
    Neural Computing and Applications, 2024, 36 : 7471 - 7489
  • [8] An improved particle swarm optimization for feature selection
    Yuanning Liu
    Gang Wang
    Huiling Chen
    Hao Dong
    Xiaodong Zhu
    Sujing Wang
    Journal of Bionic Engineering, 2011, 8 : 191 - 200
  • [9] An Improved Particle Swarm Optimization for Feature Selection
    Liu, Yuanning
    Wang, Gang
    Chen, Huiling
    Dong, Hao
    Zhu, Xiaodong
    Wang, Sujing
    JOURNAL OF BIONIC ENGINEERING, 2011, 8 (02) : 191 - 200
  • [10] An improved particle swarm optimization for feature selection
    Chen, Li-Fei
    Su, Chao-Ton
    Chen, Kun-Huang
    INTELLIGENT DATA ANALYSIS, 2012, 16 (02) : 167 - 182