Evolution of the spectral index after inflation

被引:3
作者
Asgari, A. A. [1 ]
Abbassi, A. H. [1 ]
机构
[1] Tarbiat Modares Univ, Sch Sci, Dept Phys, Tehran, Iran
来源
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS | 2014年 / 09期
关键词
cosmological perturbation theory; inflation; DENSITY PERTURBATIONS; COSMOLOGICAL MODEL; ANGULAR VARIATIONS; FLUCTUATIONS; UNIVERSE;
D O I
10.1088/1475-7516/2014/09/042
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In this article we investigate the time evolution of the adiabatic (curvature) and isocurvature (entropy) spectral indices after inflation era for all cosmological scales with two different initial conditions. For this purpose, we first extract an explicit equation for the time evolution of the comoving curvature perturbation (which may be known as the generalized Mukhanov-Sasaki equation). It would be cleared that the evolution of adiabatic spectral index severely depends on the initial conditions moreover, as expected it is constant only for the super-Hubble scales and adiabatic initial conditions. Additionally, the adiabatic spectral index after recombination approaches a constant value for the isocurvature perturbations. Finally, we re-investigate the Sachs-Wolfe effect and show that the fudge factor 1/3 in the adiabatic ordinary Sachs-Wolfe formula must be replaced by 0.4.
引用
收藏
页数:16
相关论文
共 32 条
[1]   Planck 2013 results. XVI. Cosmological parameters [J].
Ade, P. A. R. ;
Aghanim, N. ;
Armitage-Caplan, C. ;
Arnaud, M. ;
Ashdown, M. ;
Atrio-Barandela, F. ;
Aumont, J. ;
Baccigalupi, C. ;
Banday, A. J. ;
Barreiro, R. B. ;
Bartlett, J. G. ;
Battaner, E. ;
Benabed, K. ;
Benoit, A. ;
Benoit-Levy, A. ;
Bernard, J. -P. ;
Bersanelli, M. ;
Bielewicz, P. ;
Bobin, J. ;
Bock, J. J. ;
Bonaldi, A. ;
Bond, J. R. ;
Borrill, J. ;
Bouchet, F. R. ;
Bridges, M. ;
Bucher, M. ;
Burigana, C. ;
Butler, R. C. ;
Calabrese, E. ;
Cappellini, B. ;
Cardoso, J. -F. ;
Catalano, A. ;
Challinor, A. ;
Chamballu, A. ;
Chary, R. -R. ;
Chen, X. ;
Chiang, H. C. ;
Chiang, L. -Y ;
Christensen, P. R. ;
Church, S. ;
Clements, D. L. ;
Colombi, S. ;
Colombo, L. P. L. ;
Couchot, F. ;
Coulais, A. ;
Crill, B. P. ;
Curto, A. ;
Cuttaia, F. ;
Danese, L. ;
Davies, R. D. .
ASTRONOMY & ASTROPHYSICS, 2014, 571
[2]  
[Anonymous], 2005, PHYS FDN COSMOLOGY, DOI DOI 10.1017/CBO9780511790553
[3]  
[Anonymous], 2013, MATH METHOD PHYS
[4]  
[Anonymous], 2008, COSMOLOGY
[5]   GAUGE-INVARIANT COSMOLOGICAL PERTURBATIONS [J].
BARDEEN, JM .
PHYSICAL REVIEW D, 1980, 22 (08) :1882-1905
[6]   SPONTANEOUS CREATION OF ALMOST SCALE-FREE DENSITY PERTURBATIONS IN AN INFLATIONARY UNIVERSE [J].
BARDEEN, JM ;
STEINHARDT, PJ ;
TURNER, MS .
PHYSICAL REVIEW D, 1983, 28 (04) :679-693
[7]   Adiabatic and isocurvature perturbations from inflation: Power spectra and consistency relations [J].
Bartolo, N ;
Matarrese, S ;
Riotto, A .
PHYSICAL REVIEW D, 2001, 64 (12)
[8]  
Durrer R, 2008, COSMIC MICROWAVE BACKGROUND, P1, DOI 10.1017/CBO9780511817205
[9]  
Ellis GFR, 2012, RELATIVISTIC COSMOLOGY, P1, DOI 10.1017/CBO9781139014403
[10]   Adiabatic and entropy perturbations from inflation [J].
Gordon, C ;
Wands, D ;
Bassett, BA ;
Maartens, R .
PHYSICAL REVIEW D, 2001, 63 (02) :11