Nanotechnology-Based Targeted Drug Delivery: An Emerging Tool to Overcome Tuberculosis

被引:49
作者
Baranyai, Zsuzsa [1 ]
Soria-Carrera, Hector [1 ,3 ]
Alleva, Maria [1 ]
Millan-Placer, Ana C. [4 ,5 ]
Lucia, Ainhoa [4 ,5 ,6 ,7 ]
Martin-Rapun, Rafael [1 ,2 ,3 ]
Ainsa, Jose A. [4 ,5 ,6 ,7 ]
de la Fuente, Jesus M. [1 ,3 ]
机构
[1] Univ Zaragoza, CSIC, Inst Nanociencia & Mat Aragon INMA, C Mariano Esquillor S-N, Zaragoza 50018, Spain
[2] Univ Zaragoza, Fac Ciencias, Dept Quim Organ, Zaragoza 50009, Spain
[3] CIBER BioIngn, Inst Salud Carlos 3, Biomat & Nanomed CIBER BBN, Madrid 28029, Spain
[4] Univ Zaragoza, Fac Med, Dept Microbiol, C Domingo Miral S-N, Zaragoza 50009, Spain
[5] Inst Invest Sanitaria Aragon IIS Aragon, Zaragoza 50009, Spain
[6] Univ Zaragoza, Inst Biocomputac & Fis Sistemas Complejos BIFI, C Mariano Esquillor S-N, Zaragoza 50018, Spain
[7] Inst Salud Carlos III, CIBER Enfermedades Resp CIBERES, Madrid 28029, Spain
基金
欧盟地平线“2020”;
关键词
active targeting; drug delivery; macrophage targeting; nanotechnology; tuberculosis; SOLID LIPID NANOPARTICLES; PATTERN-RECOGNITION RECEPTORS; TUFTSIN-BEARING LIPOSOMES; FORMYL PEPTIDE RECEPTORS; IN-VIVO EFFICACY; MYCOBACTERIUM-TUBERCULOSIS; ANTITUBERCULOSIS DRUGS; ENHANCED PERMEABILITY; ALVEOLAR MACROPHAGES; FOLATE RECEPTOR;
D O I
10.1002/adtp.202000113
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
The appearance and rapid spread of drug resistant strains of tuberculosis (TB), one of the deadliest infectious diseases, pose a serious threat to public health and increase the need for shorter, less toxic, and more effective therapies. Developing new drugs is difficult and often associated with side effects, so nanotechnology has emerged as a tool to improve current treatments and to rescue drugs having elevated toxicity or poor solubility. Due to their size and surface chemistry, antimicrobial-loaded nanocarriers are avidly taken up by macrophages, the main cells hostingMycobacterium tuberculosis. Macrophages are continuously recruited to infected areas, they can transport drugs with them, making passive targeting a good strategy for TB treatment. Active targeting (decorating surface of nanocarriers with ligands specific to receptors displayed by macrophages) further increases local drug concentration, and thus treatment efficacy. Although in in vivo studies, nanocarriers are often administered intravenously in order to avoid inaccurate dosage in animals, translation to humans requires more convenient routes like pulmonary or oral administration. This report highlights the importance and progress of pulmonary administration, passive and active targeting strategies toward bacteria reservoirs to overcome the challenges in TB treatment.
引用
收藏
页数:22
相关论文
共 208 条
[71]   Dry Powder Antibiotic Aerosol Product Development: Inhaled Therapy for Tuberculosis [J].
Hickey, Anthony J. ;
Misra, Amit ;
Fourie, P. Bernard .
JOURNAL OF PHARMACEUTICAL SCIENCES, 2013, 102 (11) :3900-3907
[72]   Mycobacteria Exploit Host Hyaluronan for Efficient Extracellular Replication [J].
Hirayama, Yukio ;
Yoshimura, Mamiko ;
Ozeki, Yuriko ;
Sugawara, Isamu ;
Udagawa, Tadashi ;
Mizuno, Satoru ;
Itano, Naoki ;
Kimata, Koji ;
Tamaru, Aki ;
Ogura, Hisashi ;
Kobayashi, Kazuo ;
Matsumoto, Sohkichi .
PLOS PATHOGENS, 2009, 5 (10)
[73]   Surface Layer Modification of Poly(D,L-lactic-co-glycolic acid) Nanoparticles with Targeting Peptide: A Convenient Synthetic Route for Pluronic F127-Tuftsin Conjugate [J].
Horvati, Kata ;
Gyulai, Gergo ;
Csampai, Antal ;
Rohonczy, Janos ;
Kiss, Eva ;
Bosze, Szilvia .
BIOCONJUGATE CHEMISTRY, 2018, 29 (05) :1495-1499
[74]   Antimycobacterial activity of peptide conjugate of pyridopyrimidine derivative against Mycobacterium tuberculosis in a series of in vitro and in vivo models [J].
Horvati, Kata ;
Bacsa, Bernadett ;
Szabo, Nora ;
Fodor, Kinga ;
Balka, Gyula ;
Rusvai, Miklos ;
Kiss, Eva ;
Mezo, Gabor ;
Grolmusz, Vince ;
Vertessy, Beata ;
Hudecz, Ferenc ;
Bosze, Szilvia .
TUBERCULOSIS, 2015, 95 :S207-S211
[75]   Nanoparticle Encapsulated Lipopeptide Conjugate of Antitubercular Drug Isoniazid: In Vitro Intracellular Activity and in Vivo Efficacy in a Guinea Pig Model of Tuberculosis [J].
Horvati, Kata ;
Bacsa, Bernadett ;
Kiss, Eva ;
Gyulai, Gergo ;
Fodor, Kinga ;
Balka, Gyula ;
Rusvai, Miklos ;
Szabo, Eleonora ;
Hudecz, Ferenc ;
Bosze, Szilvia .
BIOCONJUGATE CHEMISTRY, 2014, 25 (12) :2260-2268
[76]   Enhanced Cellular Uptake of a New, in Silico Identified Antitubercular Candidate by Peptide Conjugation [J].
Horvati, Kata ;
Bacsa, Bernadett ;
Szabo, Nora ;
David, Sandor ;
Mezo, Gabor ;
Grolmusz, Vince ;
Vertessy, Beata ;
Hudecz, Ferenc ;
Bosze, Szilvia .
BIOCONJUGATE CHEMISTRY, 2012, 23 (05) :900-907
[77]   Nanoparticles Targeting Macrophages as Potential Clinical Therapeutic Agents Against Cancer and Inflammation [J].
Hu, Guorong ;
Guo, Mengfei ;
Xu, Juanjuan ;
Wul, Feng ;
Fan, Jinshuo ;
Huang, Qi ;
Yang, Guanghai ;
Lv, Zhilei ;
Wang, Xuan ;
Jin, Yang .
FRONTIERS IN IMMUNOLOGY, 2019, 10
[78]   Current Trends and Challenges in the Clinical Translation of Nanoparticulate Nanomedicines: Pathways for Translational Development and Commercialization [J].
Hua, Susan ;
de Matos, Maria B. C. ;
Metselaar, Josbert M. ;
Storm, Gert .
FRONTIERS IN PHARMACOLOGY, 2018, 9
[79]   Nanomedicines as Drug Delivery Carriers of Anti-Tubercular Drugs: From Pathogenesis to Infection Control [J].
Hussain, Afzal ;
Singh, Sima ;
Das, Sabya Sachi ;
Anjireddy, Keshireddy ;
Karpagam, Subramanian ;
Shakeel, Faiyaz .
CURRENT DRUG DELIVERY, 2019, 16 (05) :400-429
[80]   Delivery of ofloxacin to the lung and alveolar macrophages via hyaluronan microspheres for the treatment of tuberculosis [J].
Hwang, S. M. ;
Kim, D. D. ;
Chung, S. J. ;
Shim, C. K. .
JOURNAL OF CONTROLLED RELEASE, 2008, 129 (02) :100-106