Nanotechnology-Based Targeted Drug Delivery: An Emerging Tool to Overcome Tuberculosis

被引:49
作者
Baranyai, Zsuzsa [1 ]
Soria-Carrera, Hector [1 ,3 ]
Alleva, Maria [1 ]
Millan-Placer, Ana C. [4 ,5 ]
Lucia, Ainhoa [4 ,5 ,6 ,7 ]
Martin-Rapun, Rafael [1 ,2 ,3 ]
Ainsa, Jose A. [4 ,5 ,6 ,7 ]
de la Fuente, Jesus M. [1 ,3 ]
机构
[1] Univ Zaragoza, CSIC, Inst Nanociencia & Mat Aragon INMA, C Mariano Esquillor S-N, Zaragoza 50018, Spain
[2] Univ Zaragoza, Fac Ciencias, Dept Quim Organ, Zaragoza 50009, Spain
[3] CIBER BioIngn, Inst Salud Carlos 3, Biomat & Nanomed CIBER BBN, Madrid 28029, Spain
[4] Univ Zaragoza, Fac Med, Dept Microbiol, C Domingo Miral S-N, Zaragoza 50009, Spain
[5] Inst Invest Sanitaria Aragon IIS Aragon, Zaragoza 50009, Spain
[6] Univ Zaragoza, Inst Biocomputac & Fis Sistemas Complejos BIFI, C Mariano Esquillor S-N, Zaragoza 50018, Spain
[7] Inst Salud Carlos III, CIBER Enfermedades Resp CIBERES, Madrid 28029, Spain
基金
欧盟地平线“2020”;
关键词
active targeting; drug delivery; macrophage targeting; nanotechnology; tuberculosis; SOLID LIPID NANOPARTICLES; PATTERN-RECOGNITION RECEPTORS; TUFTSIN-BEARING LIPOSOMES; FORMYL PEPTIDE RECEPTORS; IN-VIVO EFFICACY; MYCOBACTERIUM-TUBERCULOSIS; ANTITUBERCULOSIS DRUGS; ENHANCED PERMEABILITY; ALVEOLAR MACROPHAGES; FOLATE RECEPTOR;
D O I
10.1002/adtp.202000113
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
The appearance and rapid spread of drug resistant strains of tuberculosis (TB), one of the deadliest infectious diseases, pose a serious threat to public health and increase the need for shorter, less toxic, and more effective therapies. Developing new drugs is difficult and often associated with side effects, so nanotechnology has emerged as a tool to improve current treatments and to rescue drugs having elevated toxicity or poor solubility. Due to their size and surface chemistry, antimicrobial-loaded nanocarriers are avidly taken up by macrophages, the main cells hostingMycobacterium tuberculosis. Macrophages are continuously recruited to infected areas, they can transport drugs with them, making passive targeting a good strategy for TB treatment. Active targeting (decorating surface of nanocarriers with ligands specific to receptors displayed by macrophages) further increases local drug concentration, and thus treatment efficacy. Although in in vivo studies, nanocarriers are often administered intravenously in order to avoid inaccurate dosage in animals, translation to humans requires more convenient routes like pulmonary or oral administration. This report highlights the importance and progress of pulmonary administration, passive and active targeting strategies toward bacteria reservoirs to overcome the challenges in TB treatment.
引用
收藏
页数:22
相关论文
共 208 条
[21]   ISOLATION AND SUBUNIT COMPOSITION OF TUFTSIN RECEPTOR [J].
BUMP, NJ ;
LEE, J ;
WLEKLIK, M ;
REICHLER, J ;
NAJJAR, VA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1986, 83 (19) :7187-7191
[22]   Functionalized rifampicin-loaded nanostructured lipid carriers enhance macrophages uptake and antimycobacterial activity [J].
Carneiro, Simone Pinto ;
Carvalho, Karen Vitor ;
de Oliveira Aguiar Soares, Rodrigo Dian ;
Carneiro, Claudia Martins ;
Guerra de Andrade, Milton Hercules ;
Duarte, Rafael Silva ;
Henrique dos Santos, Orlando David .
COLLOIDS AND SURFACES B-BIOINTERFACES, 2019, 175 :306-313
[23]   Optimal structural design of mannosylated nanocarriers for macrophage targeting [J].
Chen, Peiming ;
Zhang, Xiaoping ;
Jia, Lee ;
Prud'homme, Robert K. ;
Szekely, Zoltan ;
Sinko, Patrick J. .
JOURNAL OF CONTROLLED RELEASE, 2014, 194 :341-349
[24]   Therapeutic efficacy of nanoparticles and routes of administration [J].
Chenthamara, Dhrisya ;
Subramaniam, Sadhasivam ;
Ramakrishnan, Sankar Ganesh ;
Krishnaswamy, Swaminathan ;
Essa, Musthafa Mohamed ;
Lin, Feng-Huei ;
Qoronfleh, M. Walid .
BIOMATERIALS RESEARCH, 2019, 23 (01)
[25]  
Cheung LS, 2019, TUBERCULOSIS HOST-PATHOGEN INTERACTIONS, P63, DOI 10.1007/978-3-030-25381-3_4
[26]   Effect of surface-mannose modification on aerosolized liposomal delivery to alveolar macrophages [J].
Chono, Sumio ;
Kaneko, Keita ;
Yamamoto, Eri ;
Togami, Kohei ;
Morimoto, Kazuhiro .
DRUG DEVELOPMENT AND INDUSTRIAL PHARMACY, 2010, 36 (01) :102-107
[27]   Enhanced Delivery of 4-Thioureidoiminomethylpyridinium Perchlorate in Tuberculosis Models with IgG Functionalized Poly(Lactic Acid)-Based Particles [J].
Churilov, Leonid ;
Korzhikov-Vlakh, Viktor ;
Sinitsyna, Ekaterina ;
Polyakov, Dmitry ;
Darashkevich, Oleg ;
Poida, Mikhail ;
Platonova, Galina ;
Vinogradova, Tatiana ;
Utekhin, Vladimir ;
Zabolotnykh, Natalia ;
Zinserling, Vsevolod ;
Yablonsky, Peter ;
Urtti, Arto ;
Tennikova, Tatiana .
PHARMACEUTICS, 2019, 11 (01)
[28]   Targeted Intracellular Delivery of Antituberculosis Drugs to Mycobacterium tuberculosis-Infected Macrophages via Functionalized Mesoporous Silica Nanoparticles [J].
Clemens, Daniel L. ;
Lee, Bai-Yu ;
Xue, Min ;
Thomas, Courtney R. ;
Meng, Huan ;
Ferris, Daniel ;
Nel, Andre E. ;
Zink, Jeffrey I. ;
Horwitz, Marcus A. .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2012, 56 (05) :2535-2545
[29]   Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence [J].
Cole, ST ;
Brosch, R ;
Parkhill, J ;
Garnier, T ;
Churcher, C ;
Harris, D ;
Gordon, SV ;
Eiglmeier, K ;
Gas, S ;
Barry, CE ;
Tekaia, F ;
Badcock, K ;
Basham, D ;
Brown, D ;
Chillingworth, T ;
Connor, R ;
Davies, R ;
Devlin, K ;
Feltwell, T ;
Gentles, S ;
Hamlin, N ;
Holroyd, S ;
Hornby, T ;
Jagels, K ;
Krogh, A ;
McLean, J ;
Moule, S ;
Murphy, L ;
Oliver, K ;
Osborne, J ;
Quail, MA ;
Rajandream, MA ;
Rogers, J ;
Rutter, S ;
Seeger, K ;
Skelton, J ;
Squares, R ;
Squares, S ;
Sulston, JE ;
Taylor, K ;
Whitehead, S ;
Barrell, BG .
NATURE, 1998, 393 (6685) :537-+
[30]   The many faces of host responses to tuberculosis [J].
Collins, HL ;
Kaufmann, SHE .
IMMUNOLOGY, 2001, 103 (01) :1-9