Degradation of Mcl-1 by granzyme B - Implications for Bim-mediated mitochondrial apoptotic events

被引:94
作者
Han, J
Goldstein, LA
Gastman, BR
Froelich, CJ
Yin, XM
Rabinowich, H
机构
[1] Univ Pittsburgh, Inst Canc, Hillman Canc Ctr, Pittsburgh, PA 15213 USA
[2] Univ Pittsburgh, Sch Med, Dept Pathol, Pittsburgh, PA 15213 USA
[3] Univ Pittsburgh, Sch Med, Dept Plast Surg, Pittsburgh, PA 15213 USA
[4] Evanston NW Res Inst, Evanston, IL 60201 USA
关键词
D O I
10.1074/jbc.M313234200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Recent studies have suggested that in the absence of Bid, granzyme B (GrB) can utilize an unknown alternative pathway to mediate mitochondrial apoptotic events. The current study has elucidated just such a pathway for GrB-mediated mitochondrial apoptotic alterations. Two Bcl-2 family members have been identified as interactive players in this newly discovered mitochondrial response to GrB: the pro-survival protein Mcl-1L and the pro-apoptotic protein, Bim. Expression of Mcl-1L, which localizes mainly to the outer mitochondrial membrane, decreases significantly in cells subjected to CTL-free cytotoxicity mediated by a combination of GrB and replication-deficient adenovirus. The data suggest that Mcl-1L is a substrate for GrB and for caspase-3, but the two enzymes appear to target different cleavage sites. The cleavage pattern of endogenous Mcl-1L resembles that of in vitro translated Mcl-1L subjected to similar proteolytic activity. Co-immunoprecipitation experiments performed with endogenous as well as with in vitro translated proteins suggest that Mcl-1L is a high affinity binding partner of the three isoforms of Bim (extra-long, long, and short). Bim, a BH3-only protein, is capable of mediating the release of mitochondrial cytochrome c, and this activity is inhibited by the presence of exogenous Mcl-1L. The findings presented herein imply that Mcl-1L degradation by either GrB or caspase-3 interferes with Bim sequestration by Mcl-1L.
引用
收藏
页码:22020 / 22029
页数:10
相关论文
共 53 条
[1]   Granzyme B induces BID-mediated cytochrome c release and mitochondrial permeability transition [J].
Alimonti, JB ;
Shi, LF ;
Baijal, PK ;
Greenberg, AH .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (10) :6974-6982
[2]   Granzyme B directly and efficiently cleaves several downstream caspase substrates: Implications for CTL-induced apoptosis [J].
Andrade, F ;
Roy, S ;
Nicholson, D ;
Thornberry, N ;
Rosen, A ;
Casciola-Rosen, L .
IMMUNITY, 1998, 8 (04) :451-460
[3]   MCL-1S, a splicing variant of the antiapoptotic BCL-2 family member MCL-1, encodes a proapoptotic protein possessing only the BH3 domain [J].
Bae, J ;
Leo, CP ;
Hsu, SY ;
Hsueh, AJW .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (33) :25255-25261
[4]   Cytotoxic T lymphocytes: All roads lead to death [J].
Barry, M ;
Bleackley, RC .
NATURE REVIEWS IMMUNOLOGY, 2002, 2 (06) :401-409
[5]   Exon skipping in Mcl-1 results in a Bcl-2 homology domain 3 only gene product that promotes cell death [J].
Bingle, CD ;
Craig, RW ;
Swales, BM ;
Singleton, V ;
Zhou, P ;
Whyte, MKB .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (29) :22136-22146
[6]  
Bouillet P, 2002, J CELL SCI, V115, P1567
[7]   BAX frameshift mutations in cell lines derived from human haemopoietic malignancies are associated with resistance to apoptosis and microsatellite instability [J].
Brimmell, M ;
Mendiola, R ;
Mangion, J ;
Packham, G .
ONCOGENE, 1998, 16 (14) :1803-1812
[8]   Conversion of Bcl-2 to a Bax-like death effector by caspases [J].
Cheng, EHY ;
Kirsch, DG ;
Clem, RJ ;
Ravi, R ;
Kastan, MB ;
Bedi, A ;
Ueno, K ;
Hardwick, JM .
SCIENCE, 1997, 278 (5345) :1966-1968
[9]   BCL-2, BCL-XL sequester BH3 domain-only molecules preventing BAX- and BAK-mediated mitochondrial apoptosis [J].
Cheng, EHYA ;
Wei, MC ;
Weiler, S ;
Flavell, RA ;
Mak, TW ;
Lindsten, T ;
Korsmeyer, SJ .
MOLECULAR CELL, 2001, 8 (03) :705-711
[10]   Modulation of cell death by Bcl-xL through caspase interaction [J].
Clem, RJ ;
Cheng, EHY ;
Karp, CL ;
Kirsch, DG ;
Ueno, K ;
Takahashi, A ;
Kastan, MB ;
Griffin, DE ;
Earnshaw, WC ;
Veliuona, MA ;
Hardwick, JM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (02) :554-559