Overcoming ammonia synthesis scaling relations with plasma-enabled catalysis

被引:465
作者
Mehta, Prateek [1 ]
Barboun, Patrick [1 ]
Herrera, Francisco A. [2 ]
Kim, Jongsik [1 ]
Rumbach, Paul [2 ]
Go, David B. [1 ,2 ]
Hicks, Jason C. [1 ]
Schneider, William F. [1 ]
机构
[1] Univ Notre Dame, Dept Chem & Biomol Engn, Notre Dame, IN 46556 USA
[2] Univ Notre Dame, Dept Aerosp & Mech Engn, Notre Dame, IN 46556 USA
关键词
DIELECTRIC-BARRIER-DISCHARGE; ATMOSPHERIC-PRESSURE PLASMA; EVANS-POLANYI RELATION; DISSOCIATIVE CHEMISORPTION; MOLECULAR-BEAM; N-2; ENERGY; ADSORPTION; RU(001); METHANE;
D O I
10.1038/s41929-018-0045-1
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Correlations between the energies of elementary steps limit the rates of thermally catalysed reactions at surfaces. Here, we show how these limitations can be circumvented in ammonia synthesis by coupling catalysts to a non-thermal plasma. We postulate that plasma-induced vibrational excitations in N-2 decrease dissociation barriers without influencing subsequent reaction steps. We develop a density-functional-theory-based microkinetic model to incorporate this effect, and parameterize the model using N-2 vibrational excitations observed in a dielectric-barrier-discharge plasma. We predict plasma enhancement to be particularly great on metals that bind nitrogen too weakly to be active thermally. Ammonia synthesis rates observed in a dielectric-barrier-discharge plasma reactor are consistent with predicted enhancements and predicted changes in the optimal metal catalyst. The results provide guidance for optimizing catalysts for application with plasmas.
引用
收藏
页码:269 / 275
页数:7
相关论文
共 56 条
[1]   Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces [J].
Abild-Pedersen, F. ;
Greeley, J. ;
Studt, F. ;
Rossmeisl, J. ;
Munter, T. R. ;
Moses, P. G. ;
Skulason, E. ;
Bligaard, T. ;
Norskov, J. K. .
PHYSICAL REVIEW LETTERS, 2007, 99 (01)
[2]  
Akay G, 2011, US Patent, Patent No. [20130309161A1, 20130309161]
[3]   Process Intensification in Ammonia Synthesis Using Novel Coassembled Supported Microporous Catalysts Promoted by Nonthermal Plasma [J].
Akay, Galip ;
Zhang, Kui .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2017, 56 (02) :457-468
[4]   Plasma synthesis of ammonia with a microgap dielectric barrier discharge at ambient pressure [J].
Bai, MD ;
Zhang, ZT ;
Bai, XY ;
Bai, MD ;
Ning, W .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 2003, 31 (06) :1285-1291
[5]   The Bronsted-Evans-Polanyi relation and the volcano curve in heterogeneous catalysis [J].
Bligaard, T ;
Norskov, JK ;
Dahl, S ;
Matthiesen, J ;
Christensen, CH ;
Sehested, J .
JOURNAL OF CATALYSIS, 2004, 224 (01) :206-217
[6]  
CACCIATORE M, 1986, NONEQUILIBRIUM VIBRA, P5
[7]   A note on the vibrational efficacy in molecule-surface reactions [J].
Diaz, C. ;
Olsen, R. A. .
JOURNAL OF CHEMICAL PHYSICS, 2009, 130 (09)
[8]   N2 dissociative adsorption on Ru(0001):: The role of energy loss [J].
Diekhöner, L ;
Mortensen, H ;
Baurichter, A ;
Jensen, E ;
Petrunin, VV ;
Luntz, AC .
JOURNAL OF CHEMICAL PHYSICS, 2001, 115 (19) :9028-9035
[9]  
Ertl G., 1991, Elementary Steps in Ammonia Synthesis, P109, DOI DOI 10.1007/978-1-4757-9592-93
[10]   Inertia and driving force of chemical reactions. [J].
Evans, MG ;
Polanyi, M .
TRANSACTIONS OF THE FARADAY SOCIETY, 1938, 34 (01) :0011-0023