Pathologist-level classification of histopathological melanoma images with deep neural networks

被引:149
作者
Hekler, Achim [1 ]
Utikal, Jochen Sven [2 ,3 ]
Enk, Alexander H. [4 ]
Berking, Carola [5 ]
Klode, Joachim [6 ]
Schadendorf, Dirk [6 ]
Jansen, Philipp [6 ]
Franklin, Cindy [7 ]
Holland-Letz, Tim [8 ]
Krahl, Dieter [9 ]
von Kalle, Christof [1 ]
Froehling, Stefan [1 ]
Brinker, Titus Josef [1 ,4 ]
机构
[1] German Canc Res Ctr, Natl Ctr Tumor Dis, Neuenheimer Feld 460, D-69120 Heidelberg, Germany
[2] Heidelberg Univ, Dept Dermatol, Mannheim, Germany
[3] German Canc Res Ctr, Skin Canc Unit, Heidelberg, Germany
[4] Univ Hosp Heidelberg, Dept Dermatol, Heidelberg, Germany
[5] LMU, Univ Hosp Munich, Dept Dermatol, Munich, Germany
[6] Univ Hosp Essen, Dept Dermatol, Essen, Germany
[7] Univ Hosp Cologne, Dept Dermatol, Cologne, Germany
[8] DKFZ, German Canc Res Ctr, Dept Biostat, Heidelberg, Germany
[9] Private Lab Dermatohistopathol, Monchhofstr 52, D-69120 Heidelberg, Germany
关键词
Melanoma; Pathology; Histopathology; Deep learning; Artificial intelligence; DIGITAL PATHOLOGY; DERMATOLOGISTS; DIAGNOSIS; ALGORITHMS;
D O I
10.1016/j.ejca.2019.04.021
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background: The diagnosis of most cancers is made by a board-certified pathologist based on a tissue biopsy under the microscope. Recent research reveals a high discordance between individual pathologists. For melanoma, the literature reports 25-26% of discordance for classifying a benign nevus versus malignant melanoma. Deep learning was successfully implemented to enhance the precision of lung and breast cancer diagnoses. The aim of this study is to illustrate the potential of deep learning to assist human assessment for a histopathologic melanoma diagnosis. Methods: Six hundred ninety-five lesions were classified by an expert histopathologist in accordance with current guidelines (350 nevi and 345 melanomas). Only the haematoxylin and eosin stained (H&E) slides of these lesions were digitalised using a slide scanner and then randomly cropped. Five hundred ninety-five of the resulting images were used for the training of a convolutional neural network (CNN). The additional 100 H&E image sections were used to test the results of the CNN in comparison with the original class labels. Findings: The total discordance with the histopathologist was 18% for melanoma (95% confidence interval [CI]: 7.4-28.6%), 20% for nevi (95% CI: 8.9-31.1%) and 19% for the full set of images (95% CI: 11.3-26.7%). Interpretation: Even in the worst case, the discordance of the CNN was about the same compared with the discordance between human pathologists as reported in the literature. Despite the vastly reduced amount of data, time necessary for diagnosis and cost compared with the pathologist, our CNN archived on-par performance. Conclusively, CNNs indicate to be a valuable tool to assist human melanoma diagnoses. (C) 2019 The Author(s). Published by Elsevier Ltd.
引用
收藏
页码:79 / 83
页数:5
相关论文
共 18 条
[1]   Not Just Digital Pathology, Intelligent Digital Pathology [J].
Acs, Balazs ;
Rimm, David L. .
JAMA ONCOLOGY, 2018, 4 (03) :403-404
[2]  
[Anonymous], 2018, Archives of pathology & lab. medicine
[3]   Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer [J].
Bejnordi, Babak Ehteshami ;
Veta, Mitko ;
van Diest, Paul Johannes ;
van Ginneken, Bram ;
Karssemeijer, Nico ;
Litjens, Geert ;
van der Laak, Jeroen A. W. M. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2017, 318 (22) :2199-2210
[4]   Deep learning outperformed 136 of 157 dermatologists in a head-to-head dermoscopic melanoma image classification task [J].
Brinker, Titus J. ;
Hekler, Achim ;
Enk, Alexander H. ;
Klode, Joachim ;
Hauschild, Axel ;
Berking, Carola ;
Schilling, Bastian ;
Haferkamp, Sebastian ;
Schadendorf, Dirk ;
Holland-Letz, Tim ;
Utikal, Jochen S. ;
von Kalle, Christof .
EUROPEAN JOURNAL OF CANCER, 2019, 113 :47-54
[5]   A convolutional neural network trained with dermoscopic images performed on par with 145 dermatologists in a clinical melanoma image classification task [J].
Brinker, Titus J. ;
Hekler, Achim ;
Enk, Alexander H. ;
Klode, Joachim ;
Hauschild, Axel ;
Berking, Carola ;
Schilling, Bastian ;
Haferkamp, Sebastian ;
Schadendorf, Dirk ;
Froehling, Stefan ;
Utikal, Jochen S. ;
von Kalle, Christof ;
Ludwig-Peitsch, Wiebke ;
Sirokay, Judith ;
Heinzerling, Lucie ;
Albrecht, Magarete ;
Baratella, Katharina ;
Bischof, Lena ;
Chorti, Eleftheria ;
Dith, Anna ;
Drusio, Christina ;
Giese, Nina ;
Gratsias, Emmanouil ;
Griewank, Klaus ;
Hallasch, Sandra ;
Hanhart, Zdenka ;
Herz, Saskia ;
Hohaus, Katja ;
Jansen, Philipp ;
Jockenhoefer, Finja ;
Kanaki, Theodora ;
Knispel, Sarah ;
Leonhard, Katja ;
Martaki, Anna ;
Matei, Liliana ;
Matull, Johanna ;
Olischewski, Alexandra ;
Petri, Maximilian ;
Placke, Jan-Malte ;
Raub, Simon ;
Salva, Katrin ;
Schlott, Swantje ;
Sody, Elsa ;
Steingrube, Nadine ;
Stoffels, Ingo ;
Ugurel, Selma ;
Sondermann, Wiebke ;
Zaremba, Anne ;
Gebhardt, Christoffer ;
Booken, Nina .
EUROPEAN JOURNAL OF CANCER, 2019, 111 :148-154
[6]   Comparing artificial intelligence algorithms to 157 German dermatologists: the melanoma classification benchmark [J].
Brinker, Titus J. ;
Hekler, Achim ;
Hauschild, Axel ;
Berking, Carola ;
Schilling, Bastian ;
Enk, Alexander H. ;
Haferkamp, Sebastian ;
Karoglan, Ante ;
von Kalle, Christof ;
Weichenthal, Michael ;
Sattler, Elke ;
Schadendorf, Dirk ;
Gaiser, Maria R. ;
Klode, Joachim ;
Utikal, Jochen S. .
EUROPEAN JOURNAL OF CANCER, 2019, 111 :30-37
[7]   Skin Cancer Classification Using Convolutional Neural Networks: Systematic Review [J].
Brinker, Titus Josef ;
Hekler, Achim ;
Utikal, Jochen Sven ;
Grabe, Niels ;
Schadendorf, Dirk ;
Klode, Joachim ;
Berking, Carola ;
Steeb, Theresa ;
Enk, Alexander H. ;
von Kalle, Christof .
JOURNAL OF MEDICAL INTERNET RESEARCH, 2018, 20 (10)
[8]   Interobserver variability on the histopathologic diagnosis of cutaneous melanoma and other pigmented skin lesions [J].
Corona, R ;
Mele, A ;
Amini, M ;
DeRosa, G ;
Coppola, G ;
Piccardi, P ;
Fucci, M ;
Pasquini, P ;
Faraggiana, T .
JOURNAL OF CLINICAL ONCOLOGY, 1996, 14 (04) :1218-1223
[9]   Pathologists' diagnosis of invasive melanoma and melanocytic proliferations: observer accuracy and reproducibility study [J].
Elmore, Joann G. ;
Barnhill, Raymond L. ;
Elder, David E. ;
Longton, Gary M. ;
Pepe, Margaret S. ;
Reisch, Lisa M. ;
Carney, Patricia A. ;
Titus, Linda J. ;
Nelson, Heidi D. ;
Onega, Tracy ;
Tosteson, Anna N. A. ;
Weinstock, Martin A. ;
Knezevich, Stevan R. ;
Piepkorn, Michael W. .
BMJ-BRITISH MEDICAL JOURNAL, 2017, 357
[10]   Dermatologist-level classification of skin cancer with deep neural networks [J].
Esteva, Andre ;
Kuprel, Brett ;
Novoa, Roberto A. ;
Ko, Justin ;
Swetter, Susan M. ;
Blau, Helen M. ;
Thrun, Sebastian .
NATURE, 2017, 542 (7639) :115-+