Consistent scaling of thermal fluctuations in smoothed dissipative particle dynamics

被引:94
|
作者
Vazquez-Quesada, Adolfo [1 ]
Ellero, Marco [1 ,2 ]
Espanol, Pep [3 ]
机构
[1] Univ Nacl Educ Distancia, Dept Fis Fundamental, E-28080 Madrid, Spain
[2] Tech Univ Munich, Lehrstuhl Aerodynam, D-85747 Garching, Germany
[3] Freiburg Res Inst Adv Studies, D-79104 Freiburg, Germany
关键词
Brownian motion; colloids; fluctuations; liquid theory; polymer solutions; suspensions; thermochemistry; LOW-REYNOLDS-NUMBER; ENERGY-CONSERVATION; HYDRODYNAMICS; SIMULATION; FLOWS; SPH;
D O I
10.1063/1.3050100
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Dissipative particle dynamics (DPD) as a model of fluid particles suffers from the problem that it has no physical scale associated with the particles. Therefore, a DPD simulation requires an ambiguous fine-tuning of the model parameters with the physical parameters. A corrected version of DPD that does not suffer from this problem is smoothed dissipative particle dynamics (SDPD) [P. Espanol and M. Revenga, Phys. Rev. E 67, 026705 (2003)]. SDPD is, in fact, a version of the well-known smoothed particle hydrodynamics method, albeit with the proper inclusion of thermal fluctuations. Here, we show that SDPD produces the proper scaling of the fluctuations as the resolution of the simulation is varied. This is investigated in two problems: the Brownian motion of a spherical colloidal particle and a polymer molecule in suspension.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] MODELING OF VARIOUS HEAT TRANSFER PROBLEMS USING DISSIPATIVE PARTICLE DYNAMICS
    Abu-Nada, Eiyad
    NUMERICAL HEAT TRANSFER PART A-APPLICATIONS, 2010, 58 (08) : 660 - 679
  • [42] FLEXIBLE DISSIPATIVE PARTICLE DYNAMICS
    Huang, Z. G.
    Yue, T. M.
    Chan, K. C.
    Guo, Z. N.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2010, 21 (09): : 1129 - 1148
  • [43] Consistent Thermo-Capillarity and Thermal Boundary Conditions for Single-Phase Smoothed Particle Hydrodynamics
    Bierwisch, Claas
    MATERIALS, 2021, 14 (16)
  • [44] Dissipative-particle-dynamics model of biofilm growth
    Xu, Zhijie
    Meakin, Paul
    Tartakovsky, Alexandre
    Scheibe, Timothy D.
    PHYSICAL REVIEW E, 2011, 83 (06):
  • [45] Modeling mesoscopic solidification using dissipative particle dynamics
    Johansson, Erik O.
    Yamada, Toru
    Sunden, Bengt
    Yuan, Jinliang
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2016, 101 : 207 - 216
  • [46] Accelerating dissipative particle dynamics with graphic processing unit
    Lin Chen-Sen
    Chen Shuo
    Li Qi-Liang
    Yang Zhi-Gang
    ACTA PHYSICA SINICA, 2014, 63 (10)
  • [47] A new boundary treatment algorithm for dissipative particle dynamics
    Liu Mou-Bin
    Chang Jian-Zhong
    ACTA PHYSICA SINICA, 2010, 59 (11) : 7556 - 7563
  • [48] Modification of energy conservative dissipative particle dynamics for prediction of thermal conductivity of fluids
    Tan, Jian Hong
    Tan, Lit Ken
    Faghri, Mohammad
    Asako, Yutaka
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2024, 159
  • [49] Dissipative particle dynamics simulation of natural convection using variable thermal properties
    Abu-Nada, Eiyad
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2015, 69 : 84 - 93
  • [50] The interactions between surfactants and vesicles: Dissipative particle dynamics
    Huang, Kuei-Chun
    Lin, Chun-Min
    Tsao, Heng-Kwong
    Sheng, Yu-Jane
    JOURNAL OF CHEMICAL PHYSICS, 2009, 130 (24)