Solutions to degenerate complex Hessian equations

被引:44
作者
Chinh, Lu Hoang [1 ,2 ]
机构
[1] Univ Toulouse 3, Inst Math Toulouse, 118 Route Narbonne, F-31062 Toulouse, France
[2] Univ Pedag, Dept Math, Ho Chi Minh City, Vietnam
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2013年 / 100卷 / 06期
关键词
Kahler manifold; (omega; m)-subharmonic; Hessian operator; Weak solution; MONGE-AMPERE EQUATION; DIRICHLET PROBLEM; PLURISUBHARMONIC-FUNCTIONS; WEAK SOLUTIONS; INEQUALITY;
D O I
10.1016/j.matpur.2013.03.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (X, omega) be an n-dimensional compact Kahler manifold and fix an integer in such that 1 <= m <= n. We study degenerate complex Hessian equations of the form (omega + dd(c)phi)(m) boolean AND omega(n-m) = F (x, phi)omega(n). Under some natural conditions on F, this equation has a unique continuous solution. When X is homogeneous and omega is invariant under the Lie group action, we further show that the solution is Holder continuous. (C) 2013 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:785 / 805
页数:21
相关论文
共 43 条
[1]  
[Anonymous], LECT NOTES MATH
[2]  
[Anonymous], ARXIV11123063V1
[3]  
[Anonymous], 1963, Ann. Scuola Norm. Sup. Pisa Cl. Sci.
[4]  
[Anonymous], ARXIV13010710
[5]  
[Anonymous], U IAGELLONICAE UNPUB
[6]  
[Anonymous], ARXIV12033995V1
[7]   DIRICHLET PROBLEM FOR A COMPLEX MONGE-AMPERE EQUATION [J].
BEDFORD, E ;
TAYLOR, BA .
INVENTIONES MATHEMATICAE, 1976, 37 (01) :1-44
[8]  
Benelkourchi S, 2008, ANN SCUOLA NORM-SCI, V7, P81
[9]   Weak solutions to the complex Hessian equation [J].
Blocki, Z .
ANNALES DE L INSTITUT FOURIER, 2005, 55 (05) :1735-+
[10]   Uniqueness and stability for the complex Monge-Ampere equation on compact Kahler manifolds [J].
Blocki, Z .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2003, 52 (06) :1697-1701