Periodic orbits in analytically perturbed Poisson systems

被引:4
作者
Garcia, Isaac A. [1 ]
Hernandez-Bermejo, Benito [2 ]
机构
[1] Univ Lleida, Dept Matemat, Lleida 6925001, Spain
[2] Univ Rey Juan Carlos, Dept Fis, Mostoles Madrid 28933, Spain
关键词
Poisson systems; Casimir invariants; Hamiltonian systems; Perturbation theory; Limit cycles; Averaging theory; DIFFERENTIAL-SYSTEMS; LIMIT-CYCLES;
D O I
10.1016/j.physd.2014.02.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Analytical perturbations of a family of finite-dimensional Poisson systems are considered. It is shown that the family is analytically orbitally conjugate in U subset of R-n to a planar harmonic oscillator defined on the symplectic leaves. As a consequence, the perturbed vector field can be transformed in the domain U to the Lagrange standard form. On the latter, use can be made of averaging theory up to second order to study the existence, number and bifurcation phenomena of periodic orbits. Examples are given ranging from harmonic oscillators with a potential and Duffing oscillators, to a kind of zero-Hopf singularity analytic normal form. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 6
页数:6
相关论文
共 19 条
[1]  
[Anonymous], 2007, Appl. Math. Sci
[2]  
[Anonymous], NONLINEAR DIFFERENTI
[3]  
[Anonymous], 2003, SPRINGER MG MATH
[4]   Averaging methods for finding periodic orbits via Brouwer degree [J].
Buica, A ;
Llibre, J .
BULLETIN DES SCIENCES MATHEMATIQUES, 2004, 128 (01) :7-22
[5]   A second order analysis of the periodic solutions for nonlinear periodic differential systems with a small parameter [J].
Buica, Adriana ;
Gine, Jaume ;
Llibre, Jaume .
PHYSICA D-NONLINEAR PHENOMENA, 2012, 241 (05) :528-533
[6]  
Buica A, 2010, TOPOL METHOD NONL AN, V36, P91
[7]   Limit cycles of some polynomial differential systems in dimension 2, 3 and 4, via averaging theory [J].
Cima, Anna ;
Llibre, Jaume ;
Teixeira, Marco Antonio .
APPLICABLE ANALYSIS, 2008, 87 (02) :149-164
[8]   Periodic orbits for perturbed non-autonomous differential equations [J].
Coll, B. ;
Gasull, A. ;
Prohens, R. .
BULLETIN DES SCIENCES MATHEMATIQUES, 2012, 136 (07) :803-819
[9]   Poisson systems as the natural framework for additional first integrals via Darboux invariant hypersurfaces [J].
Garcia, Isaac A. ;
Hernandez-Bermejo, Benito .
BULLETIN DES SCIENCES MATHEMATIQUES, 2013, 137 (03) :242-250
[10]   Perturbed Euler top and bifurcation of limit cycles on invariant Casimir surfaces [J].
Garcia, Isaac A. ;
Hernandez-Bermejo, Benito .
PHYSICA D-NONLINEAR PHENOMENA, 2010, 239 (17) :1665-1669