Data processing methods and quality control strategies for label-free LC-MS protein quantification

被引:45
作者
Sandin, Marianne [1 ]
Teleman, Johan [1 ]
Malmstrom, Johan [1 ]
Levander, Fredrik [1 ]
机构
[1] Lund Univ, Dept Immunotechnol, S-22184 Lund, Sweden
来源
BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS | 2014年 / 1844卷 / 01期
基金
瑞典研究理事会;
关键词
Protein quantification; Quantitative proteomics; Quality control; Label free; LC-MS; Selected reaction monitoring; OPEN-SOURCE SOFTWARE; MASS-SPECTROMETRY DATA; LIQUID-CHROMATOGRAPHY; ACCURATE MASS; PEPTIDE IDENTIFICATION; PROTEOMICS EXPERIMENTS; QUANTITATIVE-ANALYSIS; BIOMARKER DISCOVERY; TIME ALIGNMENT; SPECTRAL DATA;
D O I
10.1016/j.bbapap.2013.03.026
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Protein quantification using different LC-MS techniques is becoming a standard practice. However, with a multitude of experimental setups to choose from, as well as a wide array of software solutions for subsequent data processing, it is non-trivial to select the most appropriate workflow for a given biological question. In this review, we highlight different issues that need to be addressed by software for quantitative LC-MS experiments and describe different approaches that are available. With focus on label-free quantification, examples are discussed both for LC-MS/MS and LC-SRM data processing. We further elaborate on current quality control methodology for performing accurate protein quantification experiments. This article is part of a Special Issue entitled: Computational Proteomics in the Post-Identification Era. Guest Editors: Martin Eisenacher and Christian Stephan. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:29 / 41
页数:13
相关论文
共 136 条
  • [1] Automated Detection of Inaccurate and Imprecise Transitions in Peptide Quantification by Multiple Reaction Monitoring Mass Spectrometry
    Abbatiello, Susan E.
    Mani, D. R.
    Keshishian, Hasmik
    Carr, Steven A.
    [J]. CLINICAL CHEMISTRY, 2010, 56 (02) : 291 - 305
  • [2] MassUntangler: A novel alignment tool for label-free liquid chromatography-mass spectrometry proteomic data
    Ballardini, R.
    Benevento, M.
    Arrigoni, G.
    Pattini, L.
    Roda, A.
    [J]. JOURNAL OF CHROMATOGRAPHY A, 2011, 1218 (49) : 8859 - 8868
  • [3] A proteomics performance standard to support measurement quality in proteomics
    Beasley-Green, Ashley
    Bunk, David
    Rudnick, Paul
    Kilpatrick, Lisa
    Phinney, Karen
    [J]. PROTEOMICS, 2012, 12 (07) : 923 - 931
  • [4] Bell AW, 2009, NAT METHODS, V6, P423, DOI [10.1038/NMETH.1333, 10.1038/nmeth.1333]
  • [5] A suite of algorithms for the comprehensive analysis of complex protein mixtures using high-resolution LC-MS
    Bellew, Matthew
    Coram, Marc
    Fitzgibbon, Matthew
    Igra, Mark
    Randolph, Tim
    Wang, Pei
    May, Damon
    Eng, Jimmy
    Fang, Ruihua
    Lin, ChenWei
    Chen, Jinzhi
    Goodlett, David
    Whiteaker, Jeffrey
    Paulovich, Amanda
    McIntosh, Martin
    [J]. BIOINFORMATICS, 2006, 22 (15) : 1902 - 1909
  • [6] XCMS2:: Processing tandem mass spectrometry data for metabolite identification and structural characterization
    Benton, H. P.
    Wong, D. M.
    Trauger, S. A.
    Siuzdak, G.
    [J]. ANALYTICAL CHEMISTRY, 2008, 80 (16) : 6382 - 6389
  • [7] Bertsch A, 2011, METHODS MOL BIOL, V696, P353, DOI 10.1007/978-1-60761-987-1_23
  • [8] MSSimulator: Simulation of Mass Spectrometry Data
    Bielow, Chris
    Aiche, Stephan
    Andreotti, Sandro
    Reinert, Knut
    [J]. JOURNAL OF PROTEOME RESEARCH, 2011, 10 (07) : 2922 - 2929
  • [9] Blankenberg D., 1999, CURR PROTOC MOL BIOL, V1
  • [10] Evaluation of Peak Picking Quality in LC-MS Metabolomics Data
    Brodsky, Leonid
    Moussaieff, Arieh
    Shahaf, Nir
    Aharoni, Asaph
    Rogachev, Ilana
    [J]. ANALYTICAL CHEMISTRY, 2010, 82 (22) : 9177 - 9187