On approximations to minimum link visibility paths in simple polygons

被引:1
作者
Zarrabi, Mohammad Reza [1 ]
Charkari, Nasrollah Moghaddam [1 ]
机构
[1] Tarbiat Modares Univ, Fac Elect Engn & Comp Sci, Tehran, Iran
关键词
Polygonal paths; Visibility paths; Minimum link paths; Simple polygons; QUERIES;
D O I
10.1080/23799927.2020.1831612
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We investigate a practical variant of the well-known polygonal visibility path (watchman) problem. For a polygon P, a minimum link visibility path is a polygonal visibility path in P that has the minimum number of links. The problem of finding a minimum link visibility path is NP-hard for simple polygons. If the link-length (number of links) of a minimum link visibility path (tour) is Opt for a simple polygon P with n vertices, we provide an algorithm with O (kn(2)) runtime that produces polygonal visibility paths (or tours) of link-length at most (gamma + a(l)/( k - 1 )) Opt (or (gamma + a(l)/k ) Opt), where k is a parameter dependent on P, a(l) is an output sensitive parameter and gamma is the approximation factor of an O(k(3)) time approximation algorithm for the geometric travelling salesman problem (path or tour version).
引用
收藏
页码:300 / 307
页数:8
相关论文
共 13 条
[1]   FINDING AN APPROXIMATE MINIMUM-LINK VISIBILITY PATH INSIDE A SIMPLE POLYGON [J].
ALSUWAIYEL, MH ;
LEE, DT .
INFORMATION PROCESSING LETTERS, 1995, 55 (02) :75-79
[2]   MINIMAL LINK VISIBILITY PATHS INSIDE A SIMPLE POLYGON [J].
ALSUWAIYEL, MH ;
LEE, DT .
COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 1993, 3 (01) :1-25
[3]   Minimum-link watchman tours [J].
Arkin, EM ;
Mitchell, JSB ;
Piatko, CD .
INFORMATION PROCESSING LETTERS, 2003, 86 (04) :203-207
[4]   LOGARITHMIC-TIME LINK PATH QUERIES IN A SIMPLE POLYGON [J].
ARKIN, EM ;
MITCHELL, JSB ;
SURI, S .
INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 1995, 5 (04) :369-395
[5]   TRIANGULATING A SIMPLE POLYGON IN LINEAR TIME [J].
CHAZELLE, B .
DISCRETE & COMPUTATIONAL GEOMETRY, 1991, 6 (05) :485-524
[6]  
Christofides N., 1976, Tech. Rep.
[7]   OPTIMAL POINT LOCATION IN A MONOTONE SUBDIVISION [J].
EDELSBRUNNER, H ;
GUIBAS, LJ ;
STOLFI, J .
SIAM JOURNAL ON COMPUTING, 1986, 15 (02) :317-340
[8]   OPTIMAL SHORTEST-PATH QUERIES IN A SIMPLE POLYGON [J].
GUIBAS, LJ ;
HERSHBERGER, J .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1989, 39 (02) :126-152
[9]   ANALYSIS OF CHRISTOFIDES HEURISTIC - SOME PATHS ARE MORE DIFFICULT THAN CYCLES [J].
HOOGEVEEN, JA .
OPERATIONS RESEARCH LETTERS, 1991, 10 (05) :291-295
[10]   Shorter tours by nicer ears: 7/5-Approximation for the graph-TSP, 3/2 for the path version, and 4/3 for two-edge-connected subgraphs [J].
Sebo, Andras ;
Vygen, Jens .
COMBINATORICA, 2014, 34 (05) :597-629