Construction of Irregular LDPC Codes with Low Error Floors

被引:0
作者
Li, Huanlin [1 ]
Huang, Weizheng [1 ]
Dill, Jeffrey C. [1 ]
机构
[1] Ohio Univ, Dept Elect Engn & Comp Sci, Athens, OH 45701 USA
来源
IMCIC 2010: INTERNATIONAL MULTI-CONFERENCE ON COMPLEXITY, INFORMATICS AND CYBERNETICS, VOL II | 2010年
关键词
Belief Propagation (BP); Irregular Low-Density Parity-Check (LDPC) Codes; Degree Distribution; Euclidean Geometry; PARITY-CHECK CODES;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
This work describes a new systematic construction approach for irregular low-density parity-check codes based on the splitting-and-filling technique. The generated code using this proposed method not only has a given degree distribution pair but also has girth of at least six. More importantly, by carefully filling the elements of the variable (check) node sets during the generating process, we can optimize one of the special combinatorial characteristics, such as the stopping size or the girth, of an LDPC code. Simulation results show that the resulting code can achieve good near capacity performance as well as good error-floor performance when decoded using the iterative belief propagation (BP) decoding method.
引用
收藏
页码:42 / 46
页数:5
相关论文
共 20 条
[1]   Construction of irregular LDPC codes by quasi-cyclic extension [J].
Chen, Jinghu ;
Tanner, R. Michael ;
Zhang, Juntan ;
Fossorier, Marc P. C. .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2007, 53 (04) :1479-1483
[2]  
Di CY, 2002, IEEE T INFORM THEORY, V48, P1570, DOI 10.1109/TIT.2002.1003839
[3]   LOW-DENSITY PARITY-CHECK CODES [J].
GALLAGER, RG .
IRE TRANSACTIONS ON INFORMATION THEORY, 1962, 8 (01) :21-&
[4]   Regular and irregular progressive edge-growth tanner graphs [J].
Hu, XY ;
Eleftheriou, E ;
Arnold, DM .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (01) :386-398
[6]  
Li H., 2010, INT CCCT C UNPUB
[7]  
Li H., CONSTRUCTION I UNPUB
[8]  
LIVA G, 2006, J COMM SOFTWARE SYST
[9]  
Luby M., IEEE T INF THEORY
[10]  
Luby M. G., 1997, P 29 ANN ACM S THEOR, P150, DOI [DOI 10.1145/258533.258573, 10.1145/258533.258573]