A rational approach to the Prelle-Singer algorithm

被引:24
作者
Man, YK [1 ]
MacCallum, MAH [1 ]
机构
[1] UNIV LONDON QUEEN MARY & WESTFIELD COLL,SCH MATH SCI,LONDON E1 4NS,ENGLAND
关键词
D O I
10.1006/jsco.1997.0111
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We present an approach to computing the Darboux polynomials required in the Prelle-Singer algorithm which avoids algebraic extensions of the constant field, and describe a partial implementation in REDUCE in which the leading terms of the polynomials are obtained by a modified version of the method described by Christopher and Collins. (C) 1997 Academic Press Limited.
引用
收藏
页码:31 / 43
页数:13
相关论文
共 27 条
[1]   Algorithms for special integrals of ordinary differential equations [J].
Albrecht, DW ;
Mansfield, EL ;
Milne, AE .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (05) :973-991
[2]  
[Anonymous], 1995, QUALITATIVE THEORY P
[3]  
Bronstein M., 1990, Applicable Algebra in Engineering, Communication and Computing, V1, P5, DOI 10.1007/BF01810844
[4]   INVARIANT ALGEBRAIC-CURVES AND CONDITIONS FOR A CENTER [J].
CHRISTOPHER, CJ .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1994, 124 :1209-1229
[5]  
Codutti M., 1992, International System Symposium on Symbolic and Algebraic Computation 92, P69, DOI 10.1145/143242.143273
[6]  
COLLINS C, 1993, ALGEBRAIC CONDITIONS
[7]  
COLLINS CB, 1993, ALGEBRAIC INVARIANT
[8]  
Darboux G., 1878, B SCI MATH, V2, P60
[9]  
DARBOUX G, 1878, B SCI MATH ASTRON, V2, P123
[10]  
Darboux G., 1878, B SCI MATH, V2, P151