Converting rice husk to biochar reduces bamboo soil N2O emissions under different forms and rates of nitrogen additions

被引:18
作者
Zhou, Rong [1 ,2 ]
El-Naggar, Ali [1 ,2 ]
Li, Yongfu [1 ,2 ]
Cai, Yanjiang [1 ,2 ]
Chang, Scott X. [1 ,3 ]
机构
[1] Zhejiang A&F Univ, State Key Lab Subtrop Silviculture, Hangzhou 311300, Peoples R China
[2] Zhejiang A&F Univ, Zhejiang Prov Key Lab Carbon Cycling Forest Ecosy, Hangzhou 311300, Peoples R China
[3] Univ Alberta, Dept Renewable Resources, 442 Earth Sci Bldg, Edmonton, AB T6G 2E3, Canada
基金
中国国家自然科学基金;
关键词
Exogenous carbon; Greenhouse gas; Lei bamboo forest; Nitrogen form; Nitrogen rate; OXIDE EMISSIONS; N-FERTILIZER; DENITRIFICATION; CARBON; CROP; NITRIFICATION; WATER; TEMPERATURE; MECHANISMS; ADSORPTION;
D O I
10.1007/s11356-021-12744-w
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The effects of biochar application combined with different forms and rates of inorganic nitrogen (N) addition on nitrous oxide (N2O) emissions from forest soils have not been well documented. A microcosm experiment was conducted to study the effects of rice husk and its biochar in combination with the addition of N fertilizers in different forms (ammonium [NH4+] and nitrate [NO3-]) and rates (equivalent to 150 and 300 kg N ha(-1) yr(-1)) on N2O emissions from Lei bamboo (Phyllostachys praecox) soils. The application of rice husk significantly increased cumulative N2O emissions under the addition of both NO3--N and NH4+-N. Biochar significantly reduced cumulative N2O emissions by 15.2 and 5.8 mu g N kg(-1) when co-applied with the low and high rates of NO3--N, respectively, compared with the respective NO3--N addition rate without biochar. There was no significant difference in soil N2O emissions between the two NH4+-N addition rates, and cumulative N2O emission decreased with increasing soil NH4+-N concentration, mainly due to the toxic effect caused by the excessive NH4+-N on soil N2O production from the nitrification process. Cumulative N2O emissions recorded 18.74 and 14.04 mu g N kg(-1) under low and high rates of NO3--N addition, respectively, which were higher than those produced by NH4+-N addition. Our study demonstrated that the conversion of rice husk to biochar could reduce N2O emissions under the addition of different N forms and rates. Moreover, rice husk or its biochar in combination with NH4+-N fertilizer produced less N2O in Lei bamboo soil, compared with NO3--N fertilizer.
引用
收藏
页码:28777 / 28788
页数:12
相关论文
共 82 条
[1]   Role of maize stover incorporation on nitrogen oxide emissions in a non-irrigated Mediterranean barley field [J].
Abalos, Diego ;
Sanz-Cobena, Alberto ;
Garcia-Torres, Lourdes ;
van Groenigen, Jan Willem ;
Vallejo, Antonio .
PLANT AND SOIL, 2013, 364 (1-2) :357-371
[2]   Dynamic biochar effects on nitrogen use efficiency, crop yield and soil nitrous oxide emissions during a tropical wheat-growing season [J].
Abbruzzini, Thalita Fernanda ;
Davies, Christian Andrew ;
Henrique Toledo, Fernando ;
Pellegrino Cerri, Carlos Eduardo .
JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2019, 252
[3]   Trichloroethylene adsorption by pine needle biochars produced at various pyrolysis temperatures [J].
Ahmad, Mahtab ;
Lee, Sang Soo ;
Rajapaksha, Anushka Upamali ;
Vithanage, Meththika ;
Zhang, Ming ;
Cho, Ju Sik ;
Lee, Sung-Eun ;
Ok, Yong Sik .
BIORESOURCE TECHNOLOGY, 2013, 143 :615-622
[4]   CROP RESIDUE TYPE AND PLACEMENT EFFECTS ON DENITRIFICATION AND MINERALIZATION [J].
AULAKH, MS ;
DORAN, JW ;
WALTERS, DT ;
MOSIER, AR ;
FRANCIS, DD .
SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 1991, 55 (04) :1020-1025
[5]   Changing pH shifts the microbial sourceas well as the magnitude of N2O emission from soil [J].
Baggs, Elizabeth M. ;
Smales, Claire L. ;
Bateman, Emma J. .
BIOLOGY AND FERTILITY OF SOILS, 2010, 46 (08) :793-805
[6]  
Baggs EM, 2000, SOIL USE MANAGE, V16, P82, DOI 10.1111/j.1475-2743.2000.tb00179.x
[7]   Nitrous oxide emissions following application of residues and fertiliser under zero and conventional tillage [J].
Baggs, EM ;
Stevenson, M ;
Pihlatie, M ;
Regar, A ;
Cook, H ;
Cadisch, G .
PLANT AND SOIL, 2003, 254 (02) :361-370
[8]   Effect of six engineered biochars on GHG emissions from two agricultural soils: A short-term incubation study [J].
Brassard, Patrick ;
Godbout, Stephane ;
Palacios, Joahnn H. ;
Jeanne, Thomas ;
Hogue, Richard ;
Dube, Patrick ;
Limousy, Lionel ;
Raghavan, Vijaya .
GEODERMA, 2018, 327 :73-84
[9]  
BREMNER J. M., 1960, JOUR AGRIC SCI, V55, P11, DOI 10.1017/S0021859600021572
[10]   MECHANISMS OF CARBON AND NUTRIENT RELEASE AND RETENTION IN BEECH FOREST GAPS .3. ENVIRONMENTAL-REGULATION OF SOIL RESPIRATION AND NITROUS-OXIDE EMISSIONS ALONG A MICROCLIMATIC GRADIENT [J].
BRUMME, R .
PLANT AND SOIL, 1995, 168 :593-600