Converting rice husk to biochar reduces bamboo soil N2O emissions under different forms and rates of nitrogen additions

被引:17
|
作者
Zhou, Rong [1 ,2 ]
El-Naggar, Ali [1 ,2 ]
Li, Yongfu [1 ,2 ]
Cai, Yanjiang [1 ,2 ]
Chang, Scott X. [1 ,3 ]
机构
[1] Zhejiang A&F Univ, State Key Lab Subtrop Silviculture, Hangzhou 311300, Peoples R China
[2] Zhejiang A&F Univ, Zhejiang Prov Key Lab Carbon Cycling Forest Ecosy, Hangzhou 311300, Peoples R China
[3] Univ Alberta, Dept Renewable Resources, 442 Earth Sci Bldg, Edmonton, AB T6G 2E3, Canada
基金
中国国家自然科学基金;
关键词
Exogenous carbon; Greenhouse gas; Lei bamboo forest; Nitrogen form; Nitrogen rate; OXIDE EMISSIONS; N-FERTILIZER; DENITRIFICATION; CARBON; CROP; NITRIFICATION; WATER; TEMPERATURE; MECHANISMS; ADSORPTION;
D O I
10.1007/s11356-021-12744-w
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The effects of biochar application combined with different forms and rates of inorganic nitrogen (N) addition on nitrous oxide (N2O) emissions from forest soils have not been well documented. A microcosm experiment was conducted to study the effects of rice husk and its biochar in combination with the addition of N fertilizers in different forms (ammonium [NH4+] and nitrate [NO3-]) and rates (equivalent to 150 and 300 kg N ha(-1) yr(-1)) on N2O emissions from Lei bamboo (Phyllostachys praecox) soils. The application of rice husk significantly increased cumulative N2O emissions under the addition of both NO3--N and NH4+-N. Biochar significantly reduced cumulative N2O emissions by 15.2 and 5.8 mu g N kg(-1) when co-applied with the low and high rates of NO3--N, respectively, compared with the respective NO3--N addition rate without biochar. There was no significant difference in soil N2O emissions between the two NH4+-N addition rates, and cumulative N2O emission decreased with increasing soil NH4+-N concentration, mainly due to the toxic effect caused by the excessive NH4+-N on soil N2O production from the nitrification process. Cumulative N2O emissions recorded 18.74 and 14.04 mu g N kg(-1) under low and high rates of NO3--N addition, respectively, which were higher than those produced by NH4+-N addition. Our study demonstrated that the conversion of rice husk to biochar could reduce N2O emissions under the addition of different N forms and rates. Moreover, rice husk or its biochar in combination with NH4+-N fertilizer produced less N2O in Lei bamboo soil, compared with NO3--N fertilizer.
引用
收藏
页码:28777 / 28788
页数:12
相关论文
共 50 条
  • [1] Converting rice husk to biochar reduces bamboo soil N2O emissions under different forms and rates of nitrogen additions
    Rong Zhou
    Ali El-Naggar
    Yongfu Li
    Yanjiang Cai
    Scott X. Chang
    Environmental Science and Pollution Research, 2021, 28 : 28777 - 28788
  • [2] Contrasting effects of rice husk and its biochar on N2O emissions and nitrogen leaching from Lei bamboo soils under subtropical conditions
    Zhou, Rong
    Chen, Zhe
    EI-Naggar, Ali
    Tian, Linlin
    Huang, Chengpeng
    Zhang, Zhen
    Palansooriya, Kumuduni Niroshika
    Li, Yongfu
    Yu, Bing
    Chang, Scott X.
    Cai, Yanjiang
    BIOLOGY AND FERTILITY OF SOILS, 2023, 59 (07) : 803 - 817
  • [3] Impact of biochar on soil N2O emissions under different biochar-carbon/fertilizer-nitrogen ratios at a constant moisture condition on a silt loam soil
    Feng, Zhengjun
    Zhu, Lizhong
    SCIENCE OF THE TOTAL ENVIRONMENT, 2017, 584 : 776 - 782
  • [4] Effect of mineral nitrogen fertilizer forms on N2O emissions from arable soils in winter wheat production
    Lebender, Ulrike
    Senbayram, Mehmet
    Lammel, Joachim
    Kuhlmann, Hermann
    JOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, 2014, 177 (05) : 722 - 732
  • [5] Effect of different biochar and fertilizer types on N2O and NO emissions
    Nelissen, Victoria
    Saha, Biplob Kumar
    Ruysschaert, Greet
    Boeckx, Pascal
    SOIL BIOLOGY & BIOCHEMISTRY, 2014, 70 : 244 - 255
  • [6] Soil N2O Emissions under Different N Rates in an Oil Palm Plantation on Tropical Peatland
    Chaddy, Auldry
    Melling, Lulie
    Ishikura, Kiwamu
    Hatano, Ryusuke
    AGRICULTURE-BASEL, 2019, 9 (10):
  • [7] N2O Emissions Mitigation in Acidic Soil Following Biochar Application Under Different Moisture Regimes
    Aamer, Muhammad
    Shaaban, Muhammad
    Hassan, Muhammad Umair
    Ying, Liu
    Tang, Haiying
    Ma, Qiaoying
    Munir, Hassan
    Rasheed, Adnan
    Li, Xinmei
    Ping, Li
    Huang, Guoqin
    JOURNAL OF SOIL SCIENCE AND PLANT NUTRITION, 2020, 20 (04) : 2454 - 2464
  • [8] Rice straw biochar mitigates N2O emissions under alternate wetting and drying conditions in paddy soil
    Aamer, Muhammad
    Hassan, Muhammad Umair
    Shaaban, Muhammad
    Rasul, Fahd
    Tang Haiying
    Ma Qiaoying
    Batool, Maria
    Rasheed, Adnan
    Chuan, Zhong
    Su Qitao
    Huang Guoqin
    JOURNAL OF SAUDI CHEMICAL SOCIETY, 2021, 25 (01)
  • [9] Biochar amendments to tropical paddy soil increase rice yields and decrease N2O emissions by modifying the genes involved in nitrogen cycling
    Shen, Qunli
    Wang, Honghao
    Lazcano, Cristina
    Voroney, Paul
    Elrys, Ahmed
    Gou, Guanglin
    Li, Houfu
    Zhu, Qilin
    Chen, Yunzhong
    Wu, Yanzheng
    Meng, Lei
    Brookes, Philip C.
    SOIL & TILLAGE RESEARCH, 2024, 235
  • [10] Biochar mitigates nitrogen deposition-induced enhancement of soil N2O emissions in a subtropical forest
    Zhou, Jiashu
    Delgado-Baquerizo, Manuel
    Vancov, Tony
    Liu, Yurong
    Zhou, Xuhui
    Chen, Ji
    Fang, Yunying
    Liu, Shuokang
    Yu, Bing
    Zhou, Guomo
    Gu, Baojing
    White, Jason C.
    Chen, Xinli
    Li, Yongfu
    BIOLOGY AND FERTILITY OF SOILS, 2025,